OpenSwitch OPX Developers Guide
Release 2.2.1

DCALLEMC

2018 - 2

Rev. A02

Contents

LI L= T TR 1= o (=T N 4
e e 0 TL =T o] (1 £ TR 5
RUN-TIMIE COMPONENTS 1. i1t itiiiiesie ettt ettt et et ebe e Re b e s e e b e e eb et e be b et et e s e et eebe st e bt ete b et e nbese et e et e 7
BOOT SEOUENCE.ciieee ettt ettt et e b b e e 4o s e o4 s s e b et et e b e b e e b e s e a4 e st et et e ket et e et ere et e st e be b e te et eteerereerens 9

2 Programmability..........ccccireriesrmeccritiir s s e e s s n e e s re e sa e s n e asnanRREeREeereeerarreneaes 10
Client @nd SEMVET APPIICATIONS.ciiieriiieiceiei ettt sttt et et et e s seseeseseete st esessesesseseeseseesesesessesessessasereas 10
(O ST V2= T TR il
(@ o)1= To1 = aTo I] o TU (= USSP 12
(O S o U= 1331 TSSOSO 13
PUBIISN/SUDSCIIDE. ...ttt bbb bbb b bt e b st e btk e bbbt e b s e enenes 13
APL OPEIBTIONS. ...ttt bbb E kbR bbbt bbb e 14
N7 N (g aleTe (= TaTe o] o] 1= o] 4= OSSOSO 15
(O] S A W] o] =T} =TT 15
ODBJECT AICTIONAIY SUDPPOI ...ttt bbb b bbb bbbt bbbt b e n et 17
YANG MOAEI C NEAUET ...ttt bbbt b bbbt bbbt b bbbttt n ettt an s 17
SFIOW USING YANG @NG PYTNON. ...ttt ettt b ettt neb s s 20
R NN G aleTe (=Tl =T 1T = OSSO 21
CPE APT FEIEIENCE. ...ttt bbb bbbk bbbt b b h et bbbt b bbbkt b ettt n s 21

Y o] ez o] g T = =T 4o =T N 22
VA NI ool 0= ol =)= g] o)L= TSP 22
IP address appliCation EXAMPIES........c.ciieiieise ettt a ettt ettt e st et e sses e sbes e e be e etessesessesesbeneeseseasennans 27
ROUtE apPlICATION EXAMPIES.....c.iivieiitieicieieteet ettt ettt ettt b s e b e s et e et e s ebe st ese b ese b essebe s eressesesseneas 29
ACL apPlICATION EXAMPIES.cuiiiiietiiiitiet ettt b bbbttt b bbbt eb et 31
MAC address table appliCation EXAMPIES..........cciiiiiiiiiiiiee ettt sttt e b et s esesbesesbese s 37
EVENT QpPlICATION EXAMPIES.....iiiieieieeee ettt et et et e b et et et et et et et e tesae st e nbenbenne b 43

AN o7 o] [Tex= 1u T 0 TR =14 o] o] = L =T S 46
CPS server appliCation TEMPIATES.coviirieiieiree ettt sttt a et st esesbese e s e s ebessesesaese b e e eseseenes 47
CPS client appliCatioN TEMPIATES.......civiiiiiiitiice ettt b e bt e bt e st e e b e e ebe b ebe st ere e 52
CPS event publisher appliCation TEMPIATES.ccoivriiriiiiei s 55
CPS event subscriber appliCation tEMIPIGTES.ciiiiiicirieiseee ettt s sse e s s ere e 55

DUALLEMC

Getting started

OpenSwitch OPX is implemented using a standard Linux distribution—Debian Jessie. OpenSwitch OPX is binary-compatible with Debian
Linux packages.

Linux kernel Unmodified Linux kernel included with Debian distribution provides a robust base to support current state-of-the-
art and future networking.

Linux IP stack Rich feature set provided by the Linux standard IP stack without vendor-specific changes.

Linux tools Standard Linux system administration tools are factory-installed in OpenSwitch OPX, or can be easily installed from

standard Debian repositories.

Convergence of networking, servers, and storage

The use of Linux as an operating system provides a solid foundation for the convergence of networking, server, and storage solutions.
OpenSwitch OPX allows you to easily deploy the management and orchestration solutions that are typically available for Linux servers and
storage systems.

Programmability

OpenSwitch OPX provides an object-centric API for application development—implement your own applications using a well-defined
object model and set of programmatic APls. The object model is defined using the YANG modeling language, and OpenSwitch OPX APIs
support Python and C/C++. A set of standard Debian software development packages is provided to allow you to develop applications for
OpenSwitch OPX.

Open platform abstraction

OpenSwitch OPX implements a new, open object-centric application programming interface called the control plane service (CPS)
application programming interface (API). The CPS API allows customer-developed applications to be independent of any underlying
hardware or software technology. OpenSwitch OPX internally uses the switch abstraction interface (SAl) which Dell and partner companies
contributed to the Open Compute Project. The SAI API allows OpenSwitch OPX to be independent of any network processor/switch
hardware technology. See opencompute.org for more information about SAl.

System hardware integration with standard Linux APls

OpenSwitch OPX integrates standard Linux networking APIs with the hardware functionality provided by networking devices—system and
network processors. You can download and use open source software (such as Quagga and Nagios) on any OpenSwitch OPX platform.

Disaggregated hardware and software

OpenSwitch OPX provides an environment in which hardware and software are fully modular. You can select the software modules you
want to install, and the hardware platforms you would like to use for your networking needs.

Topics:

Architecture
Run-time components
Boot sequence

DALEMC

http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Switch_Abstraction_Interface

Architecture

The main OpenSwitch OPX components include:

Linux infrastructure

Control plane services (CPS)
Switch abstraction interface (SAl)
Network adaptation service (NAS)
System device interface (SDI)
Platform adaptation service (PAS)
Dell EMC applications and tools

Using well-defined APls allow OpenSwitch OPX to provide full software modularity and abstraction of the hardware and software
platforms.

Software Software is partitioned into subcomponents that are organized as Linux packages—each package contains only
partitioning related functionality.

Software layering System components depend only on the components that logically support them.

Hardware and The SDI, SAl modules, and platform startup scripts are the only hardware-specific components in OpenSwitch
software platform OPX—all other modules are hardware-independent. Hardware-specific variations (such as number and names of
abstraction physical ports, or number of power supplies) are defined using platform definition files. OpenSwitch OPX uses

portable operating system interface (POSIX) APls. Software platform implementation-specific details are
abstracted using OpenSwitch OPX run-time libraries (common utilities and logging) as necessary.

Open API User applications interact with OpenSwitch OPX modules using the CPS API, and OpenSwitch OPX provides an
object-centric AP in the control plane services (CPS) component.

Linux infrastructure

The infrastructure consists of a collection of Linux services, libraries, and utilities preinstalled in an OpenSwitch OPX image. Together with
the Linux kernel, these components provide the foundation for the implementation of OpenSwitch OPX-specific software components.

Control plane services

Control plane services (CPS) is at the core of the architecture, providing an object-centric framework that mediates interactions between
OpenSwitch OPX applications and allows customer applications to interact with OpenSwitch OPX components.

There are two sets of application roles—clients and servers:

Client applications Execute, create, set, get, and delete operations on individual objects or lists of objects.

Server applications Execute operations requested by CPS client applications. Because client applications operate on objects, they are
not aware of the location or name of the CPS server application that executes a requested operation.

The CPS framework supports a publisher/subscriber mode, and server applications can publish relevant events, while client applications
can subscribe (register) for specific events and objects. CPS client applications can register for events when objects are created, modified,

DUALLEMC

or deleted. The publisher/subscriber approach and object-centric operations allow for the independent operation of client and server
applications.

The CPS API object model provides disaggregation between client and server applications. The client and server are unaware of one other
—they communicate only through a CPS API object (see Client and server applications).

Custom-written applications use the CPS API to communicate with OpenSwitch OPX components. The OpenSwitch OPX provides both
C/C++ and Python programming interfaces. The object model provided by the CPS layer is defined using YANG models which are used to
generate C header files—providing a programmatic representation of objects and their attributes. The header files are shared between
client and server applications—the C/C++ representation of objects and their attributes is designed to ensure compatibility between
multiple versions of the object model.

Switch abstraction interface

The OpenSwitch OPX switch abstraction interface (SAI) implements an API for network processor units (NPUs) supported on Dell EMC
platforms. The SAI APl is an open interface that abstracts vendor-specific NPU behavior. The SAI AP is the result of a joint effort of
multiple NPU vendors and user companies, who contributed the SAI to the Open Compute Platform. OpenSwitch OPX is NPU-
independent and not locked into specific NPU hardware. If a new NPU is used in an OpenSwitch OPX platform, the only component that
Dell EMC engineers replace is the SAI.

Network adaptation service

The network adaptation service (NAS) manages the high-level NPU abstraction and adaptation, and aggregates the core functionality
required for networking access at Layer 1 (physical layer), Layer 2 (VLAN, link aggregation), Layer 3 (routing), ACL, QoS, and network
monitoring (mirroring and sFlow).

The NAS provides adaptation of low-level switch abstraction provided by the SAl to standard Linux networking APIs and interfaces, and to
software CPS API functionality. The NAS manages the middleware that associates physical ports to Linux interfaces—also provides packet
170 services, using the Linux kernel IP stack.

System device interface

All hardware components except for NPUs are abstracted as system devices. The system device interface (SDI) API defines a low-level
platform-independent abstraction for all types of system devices. Only system device drivers that implement the SDI API are hardware-
specific—the APl itself is hardware-independent.

Example system devices:

Fan devices

Power supplies
Temperature sensors
LEDs

EEPROM
Programmable devices
Transceivers

Platform adaptation service

The platform adaptation service (PAS) provides a higher-level abstraction and aggregation of the functionality provided by the SDI
component, and implements the CPS object models associated with system devices. The PAS monitors the status of system devices and
reports changes or faults as CPS events. The PAS also allows applications to retrieve current status information and set control variables of
system devices.

Read current temperature values reported by temperature sensors
Get and set fan speed values
Set a LED state

DELLEMC

Read power levels reported by PSUs
Get system inventory and EEPROM information
Set and get operations on transceivers

The PAS detects:

Insertion and removal of common field replaceable units (FRUs), such as PSUs and fans
Over-temperature based on pre-defined thresholds
Media insertion on physical ports

PAS is responsible for:

Monitoring the status of system devices

Allowing applications to retrieve current status information
Reporting status changes or faults as CPS events

Allowing applications to set the control variables of system devices

Platform description infrastructure

The platform description infrastructure provides a means to describe specific per-platform configuration parameters, such as the number of
ports per system, supported transceiver modules, mapping of Linux interfaces to physical ports, and number of fans and PSUs. This
component contains the platform-specific system startup configuration and scripts.

Dell EMC applications and tools

OpenSwitch OPX provides a set of tools and commands that allow system administrators to manage Dell EMC-specific software and
hardware functionality (such as software upgrades, physical port, media information, and system inventory). OpenSwitch OPX provides a
Dell EMC-implemented thermal control application which prevents damage of hardware components in case of overheating and/or fan
failure.

Do not disable the thermal control application, as hardware damage may result.

Run-time components

OpenSwitch OPX services

opx-cps — starts the CPS broker which mediates all operations and events
opx-pas — PAS service which executes PAS functionality
opx-nas — NAS service which executes NAS functionality

Linux.
Standard
Commands

Linux
Packet VO AP
Integration
51 Librasies

% Hardware API

DUALLEMC

Applications which manage OpenSwitch OPX system components

opx-acl-init — initializes default ACL configuration or control-plane protocol packets
opx-create-interface — gets/sets interface parameters using the CPS API
opx-front-panel-ports — manages physical port mapping to Linux interfaces
opx-ip — gets/sets IP address parameters using the CPS API
opx-phy-media-config — manages configuration of physical media
opx-platform-init — initializes default platform-specific configuration
opx—-gos-init — initializes default QoS configuration

opx-monitor-phy-media — monitors physical media (SFP) events generated by PAS when you insert a pluggable module
(automatically configures port parameters)

opx-nas-init — initializes default NAS configuration
opx-nas-shell — runs NPU shell commands
opx—-tmpctl — manages the environment temperature control and executes the thermal control algorithm

Do not disable the opx-tmpctl as hardware damage may result.
NAS Linux adaptation— integration with standard Linux APls

The OpenSwitch OPX NAS daemon seamlessly integrates standard Linux network APIs with NPU hardware functionality. The NAS daemon
registers and listens to networking (netlink) events. When it receives an event, the NAS daemon processes the event contents and
programs the NPU with relevant information (such as enable/disable an interface, add/remove a route, or add/delete a VLAN).

Linux interfaces OpenSwitch OPX uses internal Linux tap devices to associate physical ports on the NPU with Linux interfaces.
associated with When a change in physical port status (up/down) occurs, the NAS daemon propagates the new port status to the
physical ports associated tap device.

Packet |70 Packet /0 describes control plane packet forwarding between physical ports and associated Linux interfaces—

implemented as a standalone thread of the NAS daemon. Packets received by the NPU are forwarded to the CPU,
and the packet I/0 thread receives the packet through a SAI API callback. Each received packet contains the
identity of the source physical port. The packet |/0O module then injects the packet to the tap device associated
with the source physical port. Applications receive packets from the Linux IP stack using standard sockets.
Applications use tap devices to transmit packets, and the packet I/0 receives the transmitted packet from the
Linux IP stack. Based on the source tap device of the packet, the transmitted packet is forwarded to the
associated physical port.

CPS services

The NAS daemon registers with the CPS as a server application to provide CPS programmability of the packet NPU. The NAS performs
create, delete, set, and get operations for objects which model the networking functionality defined by OpenSwitch OPX. The PAS daemon
also registers with CPS as a server application to provide CPS programmability for system devices.

File system organization

OpenSwitch OPX uses a standard Linux file system. The OpenSwitch OPX-specific system tools and configuration files are maintained
under the following directory structure:

/usr/bin — contains binaries
/usr/lib — contains libraries
/etc/opx — contains platform description files and default configuration files

Platform description The platform files contain a description of hardware modules that apply to the current platform, such as number of
files physical ports, fans, and power supplies.

Default configuration The default configuration files contain initialization information applicable to the current platform, such as the initial
files SAI configuration and system ACL rules to be applied at initialization.

DELLEMC

System startup

OpenSwitch OPX leverages the systemd framework for the startup of OpenSwitch OPX-specific processes. The systemd framework is
enabled by default under Debian Jesse (see www.freedesktop.org/wiki/Software/systemd).

Boot sequence

After you install an OpenSwitch OPX image, the system automatically loads the image and boots.

m OPX A Boots from OPX
partition Linux kernel login prompt

1 After the switch powers up or reboots, the boot menu displays. After a short delay, the system auto boots by loading the image—in
this case OPX-A partition. If required, during the delay you can interrupt the auto boot and select other options to select OPX-B to
load another software image, or go back to ONIE for upgrades, system recovery, and so on.

e +
| *OPX-A |
| OPX-B |
| ONIE |
e +

2 Linux boots from the OPX-A partition on the disk and starts the systemd daemon in the root file system as part of the initial setup
before the Linux login displays.

The systemd daemon starts custom services during system initialization:
PAS service initializes the platform and devices on the system
NAS service initializes the NPU and system interfaces
Other OpenSwitch OPX services create Linux interfaces that map to physical, front-panel ports on the switch

After OpenSwitch OPX custom services run successfully and the system boots up, the Linux prompt displays on the console for you
to log in.

(D | NOTE: If the service that creates internal Linux interfaces is unsuccessful, the system bootup waits 300 seconds before timing
out and displays the Linux login prompt. Log in to OpenSwitch OPX and use the troubleshooting steps to determine the cause of
the failure. You can use the systemctl command to determine if any services have failed, and the journalctl command to
inspect the log contents.

DUALLEMC

https://www.freedesktop.org/wiki/Software/systemd/

2

Programmability

The control plane service (CPS) infrastructure is at the core of system programmability. The CPS supports the definition of a well-defined,
data-centric application programming interface (CPS API) that allows customer applications to interact with system services. System
applications also use the CPS API to communicate with one another.

The CPS infrastructure provides:

A distributed framework for application interaction

Database-like API semantics, for create, delete, set, commit, and get operations
Publish/subscribe semantics

Object addressability based on object keys

Introspection

Topics:
Client and server applications
CPS keys
Objects and attributes
CPS qualifiers
Publish/subscribe
API operations
YANG modeling objects
CPS API objects
Object dictionary support
YANG model C header
sFlow using YANG and Python
YANG model reference
CPS API reference

Client and server applications

CPS client applications operate on objects and subscribe to events published by CPS server applications. CPS server applications register
for the ownership of CPS objects and implement CPS operations, such as object create, set, get, and delete.

A temperature control (TC) application is a simple OpenSwitch OPX implementation that shows how the CPS API object model
disaggregates client and server applications. The client is the TC application, and the server is the platform adaptation services (PAS)
component.

Client:
A Temperature
Control Application

3. Thermal Event 4.5t Fan Speed

OPX Software

2. Thermal Event .St Fan Speed

Server: Platform Adaption Services

1 Read Sentor 6,561 Fan Speed

Esidory Platform Hardware e

10 Programmability DELLEMC

The TC application increases the speed of a system fan when the value reported by a temperature sensor exceeds a predefined threshold
—it decreases the fan speed when the temperature falls below the threshold. The TC application needs to subscribe to temperature
threshold crossing events published by the OpenSwitch OPX platform adaptation service (PAS), and invoke a set request to change the
speed of the fan object. Neither the TC application nor the OpenSwitch OPX PAS are part of the CPS infrastructure—they function as
user applications of the CPS infrastructure.

Entities handled by the CPS infrastructure are called CPS objects (referred to as objects)—the temperature sensor and the fan are
both modeled as objects.

Objects have attributes; for example, temperature value and fan speed.

CPS applications can publish events; when and how events are generated is controlled by the application implementation. For example,
an application can publish an event when the value of an attribute changes or when the value of an attribute crosses a threshold.

CPS applications can subscribe to (listen for) events.

CPS applications can request operations to be performed on objects—a set operation. The CPS service, which registers for the
ownership of the specific object category, performs the operation.

The CPS AP provides database-like semantics—services that implement CPS operations (object owners) do not persistently store
attribute values.

The PAS registers for ownership of both the temperature sensor and fan object types. The PAS application periodically reads the value of a
temperature sensor. When the temperature is greater than a predefined threshold, the PAS creates a CPS overtemperature event. The
event contains the identity of the temperature sensor object and possibly the new temperature value.

The PAS then publishes the event using one of the CPS API functions. The CPS infrastructure determines the applications that have
subscribed for the event and object type, and provides the applications (TC application) with the contents of the event.

The publisher of the event (PAS) does not have any knowledge of the applications that have subscribed for an event. The subscriber
application (TC application) has no knowledge of the application that has published the event.

When the TC application receives the temperature event, it increases the fan speed—it creates a simple CPS transaction in which a set
operation requests a change in the speed attribute value of the fan object. CPS API functions perform the transaction. When the
transaction is committed, the CPS infrastructure finds the owner of the fan object category—the application that has registered to
execute operations requested for fan objects (PAS).

The CPS infrastructure invokes the function registered by PAS to execute the set operation for fans. PAS simply invokes the set operation
for low-level fan speed provided by the system device interface (SDI), which acts on the fan hardware and changes its speed.

CPS keys

All CPS objects require a key — the concept of a CPS key is central to the CPS infrastructure. An application uses a key to register for
object events, perform get requests, and perform transactions. A CPS key has two components—a fixed key component represented as a
sequence (array) of numeric values, and an optional (dynamic) key component.

The fixed part of a CPS key consists of:

Qualifier — Target, observed, real-time

Attribute identifiers that describe the object name and hierarchy — Object category and subcategory. An object category refers to a
class of objects, such as interfaces, and object subcategories are defined relative to categories—LAG interface and VLAN interface
which are subcategories of interfaces.

Qualifier C enum Symbol String Form Applicability Description
Target cps_api qualifier TA target Configurable attributes Current running-configuration
RGET
Observed cps_api_qualifier OB observed Configurable attributes ~ Configuration applied to hardware
SERVED and hardware status components or current status (provided by
attributes monitoring service — can be cached)

DUALLEMC

Qualifier C enum Symbol String Form Applicability Description

Real-Time cps_api qualifier RE realtime Hardware status Requests values immediately queried from
ALTIME attributes and hardware ~ hardware (no caching)
counters
Registrations cps_api qualifier RE objreg Internal to CPS Qualifier used when publishing events
GISTRATION infrastructure associated to object registrations
Proposed cps_api_qualifier PR proposed Not applicable Reserved
OPOSED

Represent the fixed component of a key in either binary (array of bytes) or string form. Express a string form either in numerical format
(1.34.2228241.2228246.2228236) or using a name alias (target/base-ip/ipv4d/vrf-id/ifindex).

Optional component

The optional (dynamic) component of a CPS key consists of a series of attribute values stored in the CPS object itself. This key component
is created by adding the relevant attributes to the object.

Build CPS key

Usethe cps api key from attr with qual function to build a CPS key. Create a key by specifying the object name and CPS
qualifier.

cps_api key from attr with qual (cps api object key(the object), object name,

cps_api qualifier TARGET);

The cps_api key from attr with qual function looks up the dynamic portion of the key and copies it into the key using the
qualifier target. To add the dynamic portion of the key, add attributes using the standard object attribute function.

Objects and attributes

CPS objects and object lists are used in the infrastructure. An object consists of a key which uniguely identifies the object, and zero or more
object attributes.

A CPS object:

Contains a variable number of attributes
Can embed other objects
Can be easily serialized—written to, read from, or a persistent or temporary storage device
Supports attribute types:
uint8 t
uintlé t
uint32 t
uinted t
char T[]

Attributes that contain other attributes
Object attributes

CPS object attributes are identified by a 64-bit ID tag (attribute identifier) and represented using a type, length, value (TLV) format. The
attribute value consists of a sequence of octets.

When an attribute contains a zero-terminated string, the terminating octet must be included in the length field. The total length of the
string "De11" must be set to 5 to include the zero terminating octet.

DELLEMC

0]

NOTE: Although the Python implementation automatically adds a zero octet to all string values, the C/C++ implementation does
not. You must take into account the zero-terminating octet when you use a C/C++ application to set the length of an attribute.

CPS qualifiers

A CPS qualifier provides the type of object data to retrieve or act on. In the temperature control example (see Client and server
applications), a client application specifies the target qualifier in the CPS key of the fan object used to set the fan speed. This qualifier tells
the PAS application to apply the specified speed to the fan (hardware) device.

Applications can only use the target qualifier for create or set operations. In a get operation, an application can use any supported qualifier:
target, observed, or real-time.

Target qualifier Indicates that the server application (object owner) returns the values of attributes previously specified in a set
operation.

Observed qualifier Indicates that the server application (object owner) returns the values of the attributes already successfully applied
to hardware entities (for user-configurable attributes), or the last retrieved hardware status information values.

Real-time qualifier Indicates that the server application (object owner) reads the current status of the hardware entity to return the
value of a requested attribute.

Observed vs. real-time qualifiers

In the temperature control example, when an application uses the observed qualifier to perform a get operation on the temperature sensor
object, the PAS returns the last value ready from the sensor (cached value). When the real-time qualifier is used, the PAS reads the current
value of the sensor and returns the current, instead of the cached value. Using real-time instead of observed qualifiers only produces
different results when the server application maintains cached values. If the application always reads the current hardware status when it
performs a get operation, the results are identical.

Target vs. observed qualifiers

When an application gets an attribute value after a set operation, target and observed qualifiers may produce different results. In the
temperature control example, the set operation to change the fan speed uses the target qualifier. Because it takes a few seconds for the
fan speed to reach the specified value, an immediate get operation using an observed qualifier may return a fan speed value different from
a get operation that uses a target qualifier for the fan object key.

Publish/subscribe

The CPS infrastructure provides a subscription mechanism for receiving and publishing object events. An application registers to receive
objects using an object key. The CPS key identifies a set of objects in an object category.

An application can register for:

All events for a given object category
All events for an object name

When an application publishes an event, subscriber applications receive the event if they have registered a key that has a prefix match with
the key associated to the published object.

If you publish a target IPv4 address object that has base-ip/ipv4/address:

The object key is {target, base-ip, ipv4, address}

The CPS qualifier (target) is @ mandatory part of the key

Any application that subscribes for objects that match any of the keys receives the event:
Key 1 {Target, base-ip} — Receives all events for objects under base-ip

DUALLEMC

Key 2 {Target, base-ip, ipv4} — Receives all events for objects under IPv4
Key 3 {Target, base-ip, ipv4,address} — Receives all IPv4 address objects
Multiple applications can subscribe for events that match a specified key

The infrastructure generates events for CPS-specific conditions when new object owners (server applications) register with the CPS, or
objects de-register from the CPS. The object key contains the registration qualifier cos_api qualifier REGISTRATION in which the
registration or de-registration event refers to. The key also indicates if the event represents a new object registration or de-registration.

API| operations

The CPS infrastructure supports database-like requests for creating, updating, deleting, and retrieving one or more objects in a single
operation. The CPS API defines the get request and transaction functionality. The CPS APl also defines an action operation to allow
applications to perform certain functions without affecting object states.

get requests

CPS get operations operate on lists of keys or an object filter that specifies the keys of objects to retrieve. An object filter can specify an
instance or a range of objects.

Get requests are blocking. When a get operation completes, the client application receives the list of retrieved objects or an error code if
there is a failure.

Transactions

CPS transactions are required for create, delete, and set operations. The CPS API provides functions to start, commit, and abort
transactions. To perform a transaction, a CPS application must start a transaction, and then add operations (create, delete, set, or action)
and their associated objects to the transaction. A transaction must be committed to complete.

Operations on the different objects added to a transaction are not necessarily executed in the order in which they are specified in the
transaction. The transactions requested by an application thread are always executed in order.

When a transaction is committed, the CPS infrastructure sends all transaction operations to their appropriate handlers, and the result of
the request is returned. In order for a result to be returned, the transaction must be valid and all operations must be received by the
registered applications. The semantics of a transaction allows any create/set/delete operation associated with the transaction to be
completed in a way that allows future CPS calls to use the object data updated as a result of committing the transaction.

Although it is not necessary for all functions in the transaction are completed, it is necessary that all operations in the transaction are
accepted by the registered applications and scheduled for processing. For example, if you add 100,000 routes in a transaction, the result of
the commit request is:

All 100,000 route objects are valid to be created
The application that creates the route objects completes the request

Transaction commit result

The transaction commit function returns a success or a failure code. If a transaction commit fails, the entire transaction fails. In this case,
the CPS infrastructure automatically calls the rollback functions provided by the CPS server applications. It is the responsibility of the
server applications (object-owner applications) to roll back any incremental changes that have already been performed as part of the
transaction.

Blocking

The CPS infrastructure is middleware that facilitates communication between components. The blocking nature of any CPS transaction or
duration is not determined by the CPS infrastructure, but by the implementation of applications registered to perform the requested
operations (object owners).

CPS API functions

DELLEMC

The CPS API provides functions for:

Initialization of the CPS services in the context of the calling process
Key management

Object and object attribute handling

CPS event handling and CPS operations

Object model representation

OpenSwitch OPX uses YANG to represent the object model. YANG object model files are converted to C object model header files, which
you use to develop CPS applications.

API language support

CPS provides Python and C/C++ application programming interfaces.

YANG modeling objects

YANG data models are used to define the content of CPS objects to configure and retrieve information from the software. A YANG model
consists of types (typedef, groupings, and enums), containers (container, list, choice, and case), and properties (leaf and leaf-list).

Each property in the YANG container is a CPS object attribute. List containers nested in a YANG model are treated as multiple instances of
embedded attributes. CPS also supports defining a separate CPS object from each nested container.

Using YANG-modeled data, the CPS YANG parser generates:

C/C++ header file containing:
YANG model name
typedefs extracted from the model
Enumerations found in the model
Enumeration of any YANG container or properties (leaf, leaf-1ist, container, list, and so on) found in the model

A Python C extension library containing CPS object metadata and YANG name-to-CPS ID mapping information.

Include the generated C header to use the CPS object name and attribute identifiers to create or delete CPS objects and set values for
each attribute in a C/C++ application.

Use the YANG module, and object and attribute names directly in a Python application. The CPS Python engine automatically uses the
extension library to derive the corresponding identifiers for these names.

Python values are present in the top-level dictionary:

data A Python dictionary containing the actual values of an object. Each element in the dictionary is a key-value pair,
where the key is an attribute name and the value is a byte array or another dictionary. Depending on the object, the
data dictionary may contain other dictionaries and a CPS key data attribute that contains the instance keys for

the object.
key A string that indicates the CPS key as a string or an alias.
operation Indicates if an object is related to a set, delete, create or action transaction—used when events are received.

CPS API objects

Common commands used to manage CPS API objects are included.

get object

DUALLEMC

Retrieve and view the contents of a CPS API object.

cps_get oid.py [-h] [-mod module] [-d]

[-qua {target,observed,proposed,realtime, registration, running,startup}]
[-attr ATTR] [-db]

module [additional [additional ...1]1]
module — object's name and optional qualifier; for example, cps/node-group of if/interfaces/interface (a qualifier can optionally be
placed at the beginning)
additional — field can contain a series of object attributes in the form of attr=value combinations
-h, --help — (Optional) displays this help message and exit
-mod module — (Optional) alternate way to specify the module name
-d — (Optional) print some additional details about the objects parsed and sent to the backend
-qua {target,observed,proposed,realtime,registration,running,startup} — (Optional) object's qualifier
-attr ATTR — (Optional) object attributes in the form of attr=value

-db — (Optional) attempt to use the database directly to satisfy the request instead of the normally registered object

Retrieve entity object for slot 1 PSU
cps_get oid.py observed/base-pas-entity entity-type=1 slot=1

set object

Perform a CPS commit operation taking the object specified on the command line.

cps_set oid.py [-h] [-mod module] [-d]
[-qua {target,observed,proposed,realtime, registration, running,startup}]
[-attr ATTR] [-db] -oper {delete,create,set,action}
[-commit-event]
module [additional [additional ...]1]

module — object's name and optional qualifier; for example, cps/node-group or if/interfaces/interface (a qualifier can optionally be
placed at the beginning)

additional — field can contain a series of object attributes in the form of attr=value combinations

-h, —--help — (Optional) displays this help message and exit

-mod module — (Optional) alternate way to specify the module name

-d — (Optional) print some additional details about the objects parsed and sent to the backend

-qua {target,observed,proposed,realtime,registration,running,startup} — (Optional) object's qualifier
-attr ATTR — (Optional) object attributes in the form of attr=value

-db — (Optional) attempt to use the database directly to satisfy the request instead of the normally registered object

-oper {delete,create,set,action} — (Optional) operations types; only used in CPS commit operations

-commit-event — (Optional) flag will try to force the default state of the auto-commit event to true; only used in CPS commit
operations

Turn on beacon LED

cps_set oid.py -oper create base-pas/led entity-type=3 slot=1 name=Beacon on=1
cps_set oid.py -oper create observed/base-pas/led entity-type=3 slot=1 name=Beacon on=1

Event trace

View CPS API events as they occur — enter the command as a CPS APl key in A.B.C.D format.

cps_trace events.py qualifier module
- qualifier = "{ target | observed | realtime | proposed | registration }"
- object path = YANG object path (e.g., base-pas/led)

qualifier — numeric qualifier of the CPS API object to trace
module — module of the CPS API object

DELLEMC

Print all CPS API events generated by PAS

cps_trace events.py -qual observed base-pas/entity

Object dictionary support

The CPS object dictionary APls access the metadata for each YANG model. The dictionary contains items for each YANG class or attribute:

Static key of the element including the elements hierarchy
Type of element

Information associated with the element

Model type—attribute, attribute-list, or object

Unique attribute identifier

Access the CPS object dictionary in both C/C++ and Python (see CPS AP reference).

YANG model C header

This example shows the C header file generated from the sFlow YANG model by the CPS YANG parser. The sFlow YANG model has two
top-level containers:

YANG list named entry

YANG container named socket-address

module dell-base-sflow {
namespace "http://www.dell.com/networking/dell-opx/dell-base-sflow";
prefix "base-sflow";

import dell-base-common {
prefix "base-cmn";

}

organization
"Dell Inc";

contact
"http://www.dell.com/support/softwarecontacts";

description
"This module contains a collection of YANG definitions provided
by platfrom to manage sflow objects";

revision 2014-02-11 {
description
"Initial revision";

}

typedef traffic-path {
type enumeration {
enum "ingress" {
value 1;
description
"Enable sampling on Ingress packets";
}
enum "egress" {
value 2;
description
"Enable sampling of Egress packets";
}
enum "ingress-egress" {
value 3;
description

DUALLEMC

"Enable sampling of Ingress and Egress packets";
}
}
default "ingress-egress";

}
list entry {
key " id",'

description
"sflow session attributes";

leaf id{
type uint32;
description
"Session id to uniquely identify a sflow session";

}

leaf ifindex {
type base-cmn:logical-ifindex;
mandatory true;
description
"Interface index which uniquely identifies physical
interface in the switch where packet sampling needs to
to be enabled";
}

leaf direction {
type base-sflow:traffic-path;
mandatory true;
description
"Direction of packets in which sampling needs to be enabled";

}

leaf sampling-rate({
type uint32;
mandatory true;
description "Rate at which packets sampling needs to be enabled";

}

container socket-address {
description
"Address that sFlow Applications need to open UDP socket on
to receive sampled packets. Sampled packets from all sFlow
sessions are sent to a single UDP socket.";

leaf ip {
type base-cmn:ipv4-address;
default 127.0.0.1;
}
leaf udp-port {
type uintl6;
default 20001;

}

The CPS YANG parser generates a C header for this model—the header includes the C definitions for the YANG entities:

Category for the YANG model is cps_api obj CAT BASE SFLOW
Subcategory for each YANG container:

BASE SFLOW_ENTRY OBJ

BASE SFLOW SOCKET ADDRESS OBJ
Attribute IDs for each property in each YANG container:

DELLEMC

BASE SFLOW ENTRY IFINDEX
BASE SFLOW ENTRY DIRECTION

/*
* source file : dell-base-sflow.h

=Y

/*

* Copyright (c) 2016 Dell Inc.

*

* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License. You may obtain
* a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

*

* THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR

* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT

* LIMITATION ANY IMPLIED WARRANTIES OR CONDITIONS OF TITLE, FITNESS

* FOR A PARTICULAR PURPOSE, MERCHANTABLITY OR NON-INFRINGEMENT.

*

*

See the Apache Version 2.0 License for specific language governing
permissions and limitations under the License.

*

*/
#ifndef DELL BASE SFLOW H
#define DELL BASE SFLOW H

#include "cps_api operation.h"
#include "dell-base-common.h"
#include <stdint.h>

#include <stdbool.h>

#define cps api obj CAT BASE SFLOW (27)

#define DELL BASE SFLOW MODEL STR "dell-base-sflow"

/*Enumeration base-sflow:traffic-path */
typedef enum {

BASE SFLOW TRAFFIC PATH INGRESS = 1, /*Enable sampling on Ingress packets*/

BASE SFLOW TRAFFIC PATH EGRESS = 2, /*Enable sampling of Egress packets*/

BASE SFLOW TRAFFIC PATH INGRESS EGRESS = 3, /*Enable sampling of Ingress and Egress packets*/
} BASE SFLOW TRAFFIC PATH t;

/*0Object base-sflow/entry */

typedef enum {

/*type=uint32*/

/*Session id to uniquely identify a sflow session*/
BASE SFLOW _ENTRY ID = 1769474,

/*type=base-cmn:logical-ifindex*/
/*Interface index which uniquely identifies physical
interface in the switch where packet sampling needs to
to be enabled*/

BASE_SFLOW ENTRY IFINDEX = 1769475,

/*type=base-cmn:traffic-path*/

/*Direction of packets in which sampling needs to be enabled*/
BASE_SFLOW ENTRY DIRECTION = 1769476,

/*type=uint32*/

/*Rate at which packets sampling needs to be enabled*/
BASE SFLOW _ENTRY SAMPLING RATE = 1769477,

} BASE SFLOW ENTRY t;

/*Object base-sflow/socket-address */

DUALLEMC

typedef enum {
/*type=base-cmn:ipvd-address*/
BASE_ SFLOW SOCKET ADDRESS IP = 1769479,

/*type=uintl6*/
BASE SFLOW SOCKET ADDRESS UDP_PORT = 1769480,

} BASE SFLOW SOCKET ADDRESS t;

/* Object subcategories */

typedef enum({

/*sflow session attributes*/
BASE SFLOW ENTRY = 1769478,
BASE_SFLOW_ENTRY OBJ = 1769478,

/*Address that sFlow Applications need to open UDP socket on
to receive sampled packets. Sampled packets from all sFlow
sessions are sent to a single UDP socket.*/

BASE SFLOW SOCKET ADDRESS = 1769481,

BASE SFLOW_SOCKET ADDRESS OBJ = 1769481,

} BASE SFLOW OBJECTS t;

#endif

sFlow using YANG and Python

This Python example shows how to use a YANG model to configure a new sFlow entry. The Python utility cps_utils is used to create
CPS objects and CPS transactions. See Application templates for information about how to write an application using the CPS API.

import cps utils
import nas os utils

Create a CPS object for the YANG container named 'entry'
cps_obj = cps_utils.CPSObject (module='base-sflow/entry")

Add each property in the YANG container as an attribute to the CPS Object
cps_obj.add attr ("ifindex", nas os utils.if nametoindex('el101-003-0"))

cps _obj.add attr ("direction", 1)

cps_obj.add attr ("sampling-rate", 5000)

Pair the CPS object with a CPS Operation - in this case it is a Create operation.
cps_update = ('create',cps obj.get())

Add the pair to the list of updates in a CPS transaction
cps_trans = cps _utils.CPSTransaction ([cps update])

Commit the transaction
r = cps_trans.commit ()

if not r:

print "Error"
else:

print "Success"

The cps_get oidis a Python utility that executes a GET APl on a YANG container. The result displays the values configured in the
software for all attributes in the YANG container.

$ cps_get oid.py 'base-sflow/entry' Key: 1.27.1769478.1769474. base-sflow/entry/ifindex =
16 base-sflow/entry/direction = 1 base-sflow/entry/sampling-rate = 5000 Dbase-sflow/entry/id
=1

DELLEMC

YANG model reference

OpenSwitch OPX provides YANG models to configure networking- and platform-related functions. These YANG models are defined by the
network adaptation and platform adaptation services.

dell-base-acl.yang — access control lists (ACLSs)
dell-base-common.yang — common definitions
dell-base-interface-common.yang — interfaces
dell-base-12-mac.yang — Layer 2 MAC address

dell-base-lag.yang — port channels/link aggregation groups (LAGs)
dell-base-mirror.yang — port mirroring
dell-base-phy-interface.yang — Layer 1/physical layer (PHY) interfaces
dell-base-port-security.yang — port security protocols
dell-base-gos.yang — quality of service (QoS)
dell-base-routing.yang — routing protocols

dell-base-sflow.yang — sFlow

dell-base-statistics.yang — diagnostic/statistical information
dell-base-stp.yang — spanning-tree protocols
dell-base-switch-element.yang — global configuration parameters for NPU
dell-base-vlan.yang — VLAN

dell-base-env-tempctl.yang — temperature control (TC)
dell-base-pas.yang — platform adaptation service (PAS)

dell-base-platform-common.yang — common platform definitions

CPS API reference

To access the Python and C/C++ CPS API reference guides, see the README file in included with the software image. The YANG model
files and C header files derived from the YANG models are included in the development packages and downloaded with the software
image.

DUALLEMC

Application examples

This information contains links which describe how to write Python and C/C++ applications using the CPS API application examples. These
links contain complete instructions, as well as links to directly view example application files.

VLAN Python application examples
IP address Python application examples
Route Python application examples
ACL Python application examples

MAC address table Python and C/C++ application examples

Event Python and C/C++ application examples

Topics:

VLAN application examples

IP address application examples

Route application examples

ACL application examples

MAC address table application examples
Event application examples

VLAN application examples

©) | NOTE: VLAN refers to an NPU VLAN object which is modeled as a Linux bridge.

Create VLAN using Python

1

Import the CPS and CPS object Python library.

import cps
import cps_ object

Create a CPS object.
cps_obj = cps_object.CPSObject ('dell-base-if-cmn/if/interfaces/interface’')
Define the VLAN ID.

VLAN ID=100
cps_obj.add attr("base-if-vlan/if/interfaces/interface/id",VLAN ID)

Define the VLAN type with a L2 or L2 VLAN ID.

cps_obj.add attr('if/interfaces/interface/type', 'ianaift:12vlan')
Associate a create operation with the CPS object to create a new VLAN.

cps_update = {'change':cps obj.get(), 'operation': 'create'}

Add the CPS operation and object pair to a new CPS transaction.

transaction = cps.transaction([cps update])

DALEMC

7 Verify the return value.

ret = transaction.commit ()
if not transaction:

raise RuntimeError ("Error creating Vlan")
print "Successfully created"

create_vlan.py

#Python code block to create VLAN
import cps

import cps object

#Create CPS Object
cps_obj = cps_object.CPSObject ('dell-base-if-cmn/if/interfaces/interface"')

#Populate the attributes for the CPS Object
cps_obj.add attr("base-if-vlan/if/interfaces/interface/id",100)
cps_obj.add attr('if/interfaces/interface/type', 'ianaift:12vlan')

#Associate a CPS Operation with the CPS Object
cps_update = {'change':cps obj.get (), 'operation': 'create'}

#Add the CPS Operation,Obj pair to a new CPS Transaction
transaction = cps.transaction([cps update])

#Verify return value

ret = transaction.commit ()
if not transaction:
raise RuntimeError ("Error creating Vlan")

print "Successfully created"

Verify VLAN creation using CPS get

cps_get oid.py dell-base-if-cmn/if/interfaces/interface if/interfaces/interface/
type=ianaift:12vlan

Key: 1.19.44.2883617.2883612.2883613.

dell-base-if-cmn/if/interfaces/interface/if-index = 40
dell-if/if/interfaces/interface/phys-address = base-if-vlan/if/interfaces/interface/id = 100
if/interfaces/interface/name = brl00

dell-if/if/interfaces/interface/learning-mode = 1

if/interfaces/interface/enabled = 0

Key: 1.19.44.2883617.2883612.2883613.
dell-base-if-cmn/if/interfaces/interface/if-index = 3
dell-if/if/interfaces/interface/phys-address = 90:bl:1c:fd:ab:ed
base-if-vlan/if/interfaces/interface/id = 0
if/interfaces/interface/name = docker0
dell-if/if/interfaces/interface/learning-mode = 1
if/interfaces/interface/enabled = 0

(D | NOTE: OpenSwitch OPX allocates an i findex for each VLAN created and further CPS set and get operations can use the
ifindex as the key.
Verify VLAN creation using Linux

$ brctl show
bridge name bridge id STP enabled interfaces
br100 8000.000000000000 no

Add VLAN port using Python

1 Import the CPS and CPS object Python library.

import cps
import cps_object

2 Create a CPS object.
cps_obj = cps_object.CPSObject ('dell-base-if-cmn/if/interfaces/interface"')

DUALLEMC

3 Define the VLAN interface name.

VLAN IF NAME='brl00'
cps_obj.add attr('if/interfaces/interface/name',VLAN IF NAME)

4 Define the untagged port to add to the VLAN.
if port list=['el01-001-0"]
cps _obj.add attr('dell-if/if/interfaces/interface/untagged-ports',if port list)
5 Associate a set operation with the CPS object to modify the property of an existing VLAN.
cps_update = {'change':cps obj.get(), 'operation': 'set'}
6 Add the CPS operation and object pair to a new CPS transaction.
transaction = cps.transaction([cps update])
7 Verify the return value.

ret = transaction.commit ()
if not transaction:

raise RuntimeError ("Error in adding port to Vlan")
print "successful"

add_vlan_port.py

#Python code block to add port to VLAN
import cps

import cps_object

#Create CPS Object
cps_obj = cps_object.CPSObject ('dell-base-if-cmn/if/interfaces/interface"')

#Populate the VLAN attributes VLAN ID='brl00'
VLAN ID='br100'
cps_obj.add attr('if/interfaces/interface/name',VLAN ID)

#Add one or more ports to the untagged-ports property of the VLAN
if port 1list=['el01-001-0','el01-002-0"','e101-003-0"]
cps_obj.add attr('dell-if/if/interfaces/interface/untagged-ports',if port list)

#Associate a CPS Set Operation with the CPS Object
cps_update = {'change':cps obj.get (), 'operation': 'set'}

#Add the CPS operation,ob]j pair to a new CPS Transaction
transaction = cps.transaction([cps update])

#Verify return value

ret = transaction.commit ()
if not transaction:
raise RuntimeError ("Error in adding port to Vlan")

print "successful"

Verify VLAN port addition using CPS get

cps _get oid.py dell-base-if-cmn/if/interfaces/interface if/interfaces/interface/
type=ianaift:12vlan

Key: 1.19.44.2883617.2883612.2883613.
dell-base-if-cmn/if/interfaces/interface/if-index = 43
dell-if/if/interfaces/interface/phys-address =
dell-if/if/interfaces/interface/untagged-ports = €101-003-0,e101-002-0,e101-001-0
base-if-vlan/if/interfaces/interface/id = 100

if/interfaces/interface/name = brl00
dell-if/if/interfaces/interface/learning-mode = 1

if/interfaces/interface/enabled = 0

Key: 1.19.44.2883617.2883612.2883613.
dell-base-if-cmn/if/interfaces/interface/if-index = 3
dell-if/if/interfaces/interface/phys-address = 90:bl:1c:f4:ab:ed
base-if-vlan/if/interfaces/interface/id = 0
if/interfaces/interface/name = docker0

DELLEMC

dell-if/if/interfaces/interface/learning-mode = 1
if/interfaces/interface/enabled = 0

Verify VLAN port addition using Linux
$ brctl show

bridge name bridge id STP enabled interfaces

brl00 8000.90bllcfdabee no el01-001-0
el101-002-0
e101-003-0

Delete VLAN port using Python

1 Import the CPS and CPS object Python library.
import cps
import cps object
2 Create a CPS object.
cps_obj = cps_object.CPSObject ('dell-base-if-cmn/if/interfaces/interface"')
3 Define the VLAN interface name.
VLAN IF NAME='brl00'
cps_obj.add attr('if/interfaces/interface/name',VLAN IF NAME)
4 Associate a set operation with the CPS object to modify the property of an existing VLAN.
cps_update = {'change':cps obj.get(), 'operation': 'set'}
5 Add the CPS operation and object pair to a new CPS transaction.

transaction = cps.transaction([cps update])

6 Verify the return value.
ret = transaction.commit ()
if not transaction:
raise RuntimeError ("Error in deleting ports to Vlan")
print "successful"

delete_ports_vlan.py

#Python code block to delete port to VLAN
import cps
import cps object

#Create CPS Object
cps_obj = cps_object.CPSObject ('dell-base-if-cmn/if/interfaces/interface"')

#Populate the Vlan attributes VLAN ID='brl00'
VLAN ID='brl00"'
cps_obj.add attr('if/interfaces/interface/name',VLAN ID)

#Delete the untagged-ports from VLAN, include the ports which is needed in the if port list
if port list=['el01-002-0"]
cps_obj.add attr('dell-if/if/interfaces/interface/untagged-ports',if port list)

#Associate a CPS Set Operation with the CPS Object
cps_update = {'change':cps obj.get (), 'operation': 'set'}

#Add the CPS operation,obj pair to a new CPS Transaction
transaction = cps.transaction([cps update])

#Verify return value
ret = transaction.commit ()
if not transaction:
raise RuntimeError ("Error in deleting ports to Vlan")
print "successful"

Verify VLAN port deletion using CPS get

cps_get oid.py dell-base-if-cmn/if/interfaces/interface if/interfaces/interface/
type=ianaift:12vlan

DUALLEMC

Key: 1.19.44.2883617.2883612.2883613.
dell-base-if-cmn/if/interfaces/interface/if-index = 47
dell-if/if/interfaces/interface/phys—-address =
dell-if/if/interfaces/interface/untagged-ports = €101-002-0
base-if-vlan/if/interfaces/interface/id = 100
if/interfaces/interface/name = brl100
dell-if/if/interfaces/interface/learning-mode = 1
if/interfaces/interface/enabled = 0

Key: 1.19.44.2883617.2883612.2883613.
dell-base-if-cmn/if/interfaces/interface/if-index = 3
dell-if/if/interfaces/interface/phys-address = 90:bl:1c:f4:ab:ed
base-if-vlan/if/interfaces/interface/id = 0
if/interfaces/interface/name = docker0
dell-if/if/interfaces/interface/learning-mode = 1
if/interfaces/interface/enabled = 0

Verify VLAN port deletion using Linux

$ brctl show
bridge name bridge id STP enabled interfaces
br100 8000.000000000000 no el01-002-0

Delete VLAN using Python

1 Import CPS and CPS object Python library.

import cps
import cps object

2 Create a CPS object.
cps_obj = cps_object.CPSObject ('dell-base-if-cmn/if/interfaces/interface’')
3 Define the name of the VLAN interface to delete.

VLAN IF NAME='brl00'
cps_obj.add attr('if/interfaces/interface/name',VLAN IF NAME)

4 Associate a delete operation with the CPS object to delete an existing VLAN.
cps_update = {'change':cps obj.get(), 'operation': 'delete'}
5 Add the CPS operation and object pair to a new CPS transaction.
transaction = cps.transaction([cps update])
6 Verify the return value.

ret = transaction.commit ()
if not transaction:

raise RuntimeError ("Error in deleting Vlan")
print "successful"

delete_vlan.py

#Python code block to delete VLAN
import cps
import cps object

#Create CPS Object
cps_obj = cps_object.CPSObject ('dell-base-if-cmn/if/interfaces/interface"')

#Populate the Vlan attributes VLAN ID='brl00'
VLAN_ID='brl00'
cps_obj.add attr('if/interfaces/interface/name',VLAN ID)

#Associate a CPS Set Operation with the CPS Object
cps_update = {'change':cps obj.get (), 'operation': 'delete'}

#Add the CPS operation,obj pair to a new CPS Transaction
transaction = cps.transaction([cps update])

#Verify return value

DELLEMC

ret = transaction.commit ()
if not transaction:

raise RuntimeError ("Error in deleting Vlan")
print "successful"

Verify VLAN deletion using CPS get

cps_get oid.py dell-base-if-cmn/if/interfaces/interface if/interfaces/interface/
type=ianaift:12vlan

Key: 1.19.44.2883617.2883612.2883613.
dell-base-if-cmn/if/interfaces/interface/if-index = 3
dell-if/if/interfaces/interface/phys-address = 90:bl:1c:fd:ab:ed
base-if-vlan/if/interfaces/interface/id = 0
if/interfaces/interface/name = docker0
dell-if/if/interfaces/interface/learning-mode = 1
if/interfaces/interface/enabled = 0

Verify VLAN deletion using Linux
$ brctl show brl00

IP address application examples

Configure IP address using Python

1 Import the CPS utility Python library.
import cps utils
2 Define the i findex and prefix length of the interface to set the IP address.
ifindex=16 ip addr="10.0.0.1"
pfix len=16
ip attributes = {"base-ip/ipv4/ifindex": ifindex,"ip":ip addr, "prefix-length":pfix len}
3 Define the attribute type to convert the IP address between string and byte-array format.
cps _utils.add attr type('base-ip/ipv4/address/ip',"ipv4")
cps_obj=cps_utils.CPSObject ('base-ip/ipv4/address',data=ip attributes)
4 Create the CPS transaction.
cps_update = ('create', cps _obj.get())
5 Add the CPS operation and object pair to a new transaction.
transaction = cps utils.CPSTransaction([cps update])
6 Verify the return value.

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error configuring IP Address")

configure-ip-address.py

#Python code block to set ip address
import cps_utils

#Populate the attributes for the CPS Object

ifindex=16

ip_addr="10.0.0.1"

pfix len=16

ip attributes = {"base-ip/ipv4/ifindex": ifindex, "ip":ip addr, "prefix-length":pfix len}

#Create CPS Object
cps_utils.add attr type ('base-ip/ipv4/address/ip',"ipv4")
cps_obj=cps utils.CPSObject ('base-ip/ipv4/address',data=ip attributes)

#Create the CPS Transaction for object create

cps_update = ('create', cps_obj.get())
transaction = cps_utils.CPSTransaction([cps update])

DUALLEMC

#Verify return value
ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error ")

Verify IP address using CPS get
cps_get oid.py 'base-ip/ipv4/address'

Key: 1.34.2228241.2228246.2228236.2228240.2228228.
base-ip/ipv4/address/prefix-length = 16
base-ip/ipv4d/vrf-id = 0

base-ip/ipv4/name = €101-001-0
base-ip/ipv4/ifindex = 16

base-ip/ipv4/address/ip = 0a000001

Verify IP address using Linux
$ ip addr show e101-001-0

16: €101-001-0: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN group default glen 500

link/ether 90:bl:1c:f4:aa:b3 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.1/16 scope global e€101-001-0 valid 1ft forever preferred 1ft forever

Delete IP address using Python

1 Import the CPS utility Python library.
import cps utils
2 Define the ifindex, IP address, and prefix length of the interface to delete.
idx=16 ip addr="10.0.0.1"
pfix len=16
ip attributes = {"base-ip/ipv4/ifindex":idx,"ip":ip addr, "prefix-length":pfix len}
3 Define the attribute type to convert the IP address between string and byte-array format.
cps_utils.add attr type ('base-ip/ipv4/address/ip',"ipv4")
cps_obj=cps utils.CPSObject ('base-ip/ipv4/address',data=ip attributes)
4 Create the CPS transaction.
cps_update = ('create', cps obj.get())
5 Add the object pair to a new CPS transaction.
transaction = cps utils.CPSTransaction([cps update])

6 Verify the return value.

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error creating Vlan")

delete-ip-address.py

#Python code block to delete ip address
import cps utils

#Populate the attributes for the CPS object

idx=16

ip _addr="10.0.0.1"

pfix len=16

ip attributes = {"base-ip/ipv4/ifindex":idx,"ip":ip addr, "prefix-length":pfix len}

#Create CPS Object
cps_utils.add attr type ('base-ip/ipv4/address/ip',"ipv4")
cps_obj=cps utils.CPSObject ('base-ip/ipv4/address',data=ip attributes)

#Create the CPS Transaction to delete the CPS Object
cps_update = ('delete', cps obj.get())
transaction = cps utils.CPSTransaction([cps update])

#Verify return value
ret = transaction.commit ()

DELLEMC

if not ret:
raise RuntimeError ("Error ")

Verify IP address Deletion using get (return indicates that €101-001-0 has no IP address)
$ cps_get oid.py 'base-ip/ipv4/address'

Verify IP address deletion

$ ip addr show e101-001-0
16: €101-001-0: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN group default glen 500
link/ether 90:bl:1c:fd4:aa:b3 brd ff:ff:ff:ff:ff:ff

Route application examples
®

NOTE: See the del1-base-route.yang model which defines the route object and attributes before you configure route
settings.

Create routing using Python

1 Import the CPS utility and netaddr Python library.

import cps utils
import socket
import netaddr as net

2 Define the protocol version, route prefix, and prefix length of the route attributes.

version = 'ipv4'

route ip = '70.5.5.0'

obj = cps_utils.CPSObject ('base-route/obj/entry")
obj.add attr("vrf-id", 0)

if version == 'ipv4':
obj.add attr("af", socket.AF INET)
elif version == 'ipv6':

obj.add attr("af", socket.AF INET6) ip = net.IPNetwork(route ip)
obj.add attr type("route-prefix", version)
obj.add attr ("route-prefix", str(ip.network))
obj.add attr ("prefix-len", int(ip.prefixlen))

3 Define the next-hop attributes and create the CPS object, then add multiple next-hop attributes to create ECMP routes.

nh addr = '1.1.1.2"

1st = ["nh-1ist", "0", "nh-addr"]
obj.add embed attr(lst, nh addr)
obj.add attr("nh-count", 1)

4 Create the CPS object.

cps_update = ('create', obj.get())
transaction = cps utils.CPSTransaction([cps update])

5 Verify the return value.

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error creating Route")

route-create.py

#Python block code to create a route
import cps utils

import socket

import netaddr as net

#Populate the attributes

version = 'ipv4'

route ip = '70.5.5.0"'

obj = cps_utils.CPSObject ('base-route/obj/entry')
obj.add attr("vrf-id", 0)

if version == 'ipv4':
obj.add attr("af", socket.AF INET)
elif version == 'ipv6':

DUALLEMC

obj.add attr("af", socket .AF INET6)
ip = net.IPNetwork (route ip)
obj.add attr type("route-prefix", version)
obj.add attr("route-prefix", str (ip.network))
obj.add attr("prefix-len", int (ip.prefixlen))

nh addr = '1.1.1.2"'

lst = ["nh-1list", "o", "nh-addr"]
obj.add embed attr (lst, nh addr)
obj.add attr("nh-count", 1)

print obj.get ()

#Create transaction
cps_update = ('create', obj.get ())
transaction = cps utils.CPSTransaction([cps update])

#Verify return value

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error creating Route")

Verify route creation

$ ip route
1.1.1.0/24 dev e101-001-0 proto kernel scope link src 1.1.1.1
70.5.5.0 via 1.1.1.2 dev €101-001-0 proto none

Delete route using Python

1 Import the CPS utility and netaddr Python library.
import cps utils
import socket
import netaddr as net

2 Define the protocol version, route prefix, and prefix length of the route attributes.

version = 'ipv4'

route ip = '70.5.5.0'

obj = cps_utils.CPSObject ('base-route/obj/entry"')
obj.add attr("vrf-id", 0)

if version == 'ipv4':
obj.add attr("af", socket.AF INET)
elif version == 'ipv6':

obj.add attr("af", socket .AF INET6)
ip = net.IPNetwork (route ip)

obj.add attr type("route-prefix", version)
obj.add attr("route-prefix", str (ip.network))
obj.add attr("prefix-len", int (ip.prefixlen))
print obj.get ()

3 Create the CPS object and create the transaction.

cps_update = ('delete', obj.get())

transaction = cps utils.CPSTransaction([cps update])
4 Verify the return value.

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error creating Route")

route-delete.py

#Python code block to delete a route
import cps utils

import socket

import netaddr as net

#Define the route attributes

version = 'ipv4'
route ip = '70.5.5.0"'

DELLEMC

obj = cps_utils.CPSObject ('base-route/obj/entry")
obj.add attr("vrf-id", 0)

if version == 'ipv4':
obj.add attr("af", socket .AF INET)
elif version == 'ipv6':

obj.add attr("af", socket.AF INET6)
ip = net.IPNetwork (route ip)

obj.add attr type("route-prefix", version)
obj.add attr("route-prefix", str (ip.network))
obj.add attr("prefix-len", int (ip.prefixlen))
print obj.get ()

#Create CPS object and create transaction
cps_update = ('delete', obj.get ())
transaction = cps utils.CPSTransaction([cps update])

#Verify return value

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error deleting Route")

Verify route deletion

$ ip route
1.1.1.0/24 dev e101-001-0 proto kernel scope link src 1.1.1.1
70.5.5.0 via 1.1.1.2 dev e€101-001-0 proto none

$ python route-delete

{'data': {'base-route/obj/entry/prefix-len': bytearray(b' \x00\x00\x00'), 'base-route/obj/entry/
vrf-id': bytearray (b'\x00\x00\x00\x00"'"), 'base-route/obj/entry/af':

bytearray (b'\x02\x00\x00\x00"'), 'base- route/obj/entry/route-prefix': 'F\x05\x05\x00"'},
'key':'1.26.1704016.1703992.1703995.1703980.1703978.1703979."}

$ ip route
1.1.1.0/24 dev e101-001-0 proto kernel scope link src 1.1.1.1

ACL application examples

® | NOTE: See the del1-base-acl.yang model which defines an ACL object and attributes before you configure ACL settings.
Configure ACL using Python

1 Import the CPS utility Python library.
import cps utils
2 Define the enum map.
NOTE: A CPS Python application does not automatically map the YANG model enum name to a number.

e stg = {'INGRESS': 1, '"EGRESS': 2}
e ftype = {'SRC MAC': 3, 'DST MAC': 4, 'SRC IP': 5, 'DST IP': 6, 'IN PORT': 9, 'DSCP': 21}
e atype = {'PACKET ACTION': 3, 'SET TC': 10}
e ptype = {'DROP': 1}
3 Register the attribute type with the CPS utility for attributes with non-integer values.
type map = {
'base-acl/entry/SRC_MAC VALUE/addr': 'mac',
'base-acl/entry/SRC_MAC VALUE/mask': 'mac',
}

for key,val in type map.items() :
cps_utils.cps attr types map.add type (key, val)
configure-acl.py

#Python code block to configure ACL
import cps utils

DUALLEMC

#Define enum map
e stg = {'INGRESS': 1, 'EGRESS': 2}

e:ftype

e atype = {'PACKET ACTION': 3, 'SET TC': 10}
e ptype = {'DROP': 1}

#Tell CPS utility about the type of each attribute
type map = {

}

'base-acl/entry/SRC_MAC VALUE/addr': 'mac',
'base-acl/entry/SRC_MAC VALUE/mask': 'mac',

for key,val in type map.items() :

cps_utils.cps attr types map.add type (key, val)

Create ACL table using Python

= {'SRC_ MAC': 3, 'DST MAC': 4, 'SRC IP': 5, 'DST IP': 6, 'IN PORT': 9, 'DSCP': 21}

An ACL table groups entries and allows a packet to match one of the entries in the group. A packet can simultaneously match ACL entries
in different tables. The table priority determines the order in which match criteria are applied.

® | NOTE: See the dell-base-acl.yang model which defines an ACL object and attributes before you configure ACL settings.

1

Import the CPS utility Python library.

import cps utils

import nas_os utils

Define the enum map.

NOTE: A CPS Python application does not automatically map the YANG model enum name to a number.

e stg = {'INGRESS': 1, 'EGRESS': 2}

e ftype {'SRC_ MAC': 3, 'DST MAC': 4, 'SRC IP': 5, 'DST IP': 6, 'IN PORT': 9, 'DSCP':
e atype = {'PACKET ACTION': 3, 'SET TC': 10}

e ptype = {'DROP': 1}

Register the attribute type with the CPS utility for attributes with non-integer values.

type map = {
'base-acl/entry/SRC_MAC VALUE/addr': 'mac',
'base-acl/entry/SRC_MAC VALUE/mask': 'mac',
}

for key,val in type map.items() :
cps_utils.cps attr types map.add type (key, val)

Create the CPS object and populate the attributes.

cps_obj = cps_utils.CPSObject (module='base-acl/table"')

Set the stage and priority.

cps_obj.add_attr ('stage', e stg['INGRESS'])

cps_obj.add attr ('priority', 99)

The allowed-match-list attribute is a YANG leaf list, which takes multiple values provided with a Python list.
cps_obj.add list ('allowed-match-fields', [e ftype['SRC MAC'], e ftype['DST IP'],
e ftype['DSCP'], e ftype['IN PORT']])

Define the CPS object.

cps_update = ('create', cps obj.get())

Define an add operation and object pair to the CPS transaction.

NOTE: Each CPS transaction can hold multiple CPS operation and object pairs.

cps_trans = cps_utils.CPSTransaction([cps_update])

Verify the return value.

ret = cps_trans.commit ()
if not ret:
raise RuntimeError ("Error creating ACL Table")

21}

DELLEMC

9 Retrieve the CPS object ID from the ACL table — this ID is used for all operations on the ACL table.

ret = cps utils.CPSObject (module="'base-acl/table', obj=r[0]['change'])
tbl id = cps get val.get attr data ('id')
print "Successfully created ACL Table " + str(tbl id)

create-acl.py
#Python code block to create ACL /usr/bin/python

mwwn

Simple Base ACL CPS config using the generic CPS Python module and utilities.

Create ACL Table

Create ACL Entry to Drop all packets received on specific port from specific Src MAC
mwwn

import cps utils

import nas os utils

#Yang enum name to number map

e stg = {'INGRESS': 1, 'EGRESS': 2}

e ftype = {'SRC MAC': 3, 'DST MAC': 4, 'SRC IP': 5, 'DST IP': 6,
"IN PORT': 9, 'DSCp': 21}

e atype {"PACKET ACTION': 3, 'SET TC': 10}

e ptype = {'DROP': 1}

#Teach CPS utility about the type of each attribute

type_map = {
'base-acl/entry/SRC_MAC VALUE/addr': 'mac',
'base-acl/entry/SRC_MAC VALUE/mask': 'mac’,

}

for key,val in type map.items() :
cps_utils.cps_attr types map.add type (key, val)

#Create ACL Table

#Create CPS Object and fill leaf attributes

cps_obj = cps_utils.CPSObject (module='base-acl/table')
cps_obj.add attr ('stage', e stg['INGRESS'])

cps obj.add attr ('priority', 99)

#Populate the leaf-list attribute

cps_obj.add list ('allowed-match-fields', [e ftype['SRC MAC'],
e ftype['DST IP'],
e ftype['DSCP'],
e ftype['IN PORT']])

#Associate the CPS Object with a CPS operation
cps_update = ('create', cps obj.get())

#Add the CPS object to a new CPS Transaction
cps_trans = cps_utils.CPSTransaction([cps update])

#Verify return value
ret = cps trans.commit ()
if not ret:
raise RuntimeError ("Error creating ACL Table")
ret = cps_utils.CPSObject (module='base-acl/table', obj=r[0]['change'])

#Retrieve CPS object ID

cps_get val = cps utils.CPSObject (module='base-acl/table', obj=r[0]['change'])
tbl id = ret.get attr data ('id')

print "Successfully created ACL Table " + str(tbl id)

Verify ACL table creation using CPS get
cps_get oid.py 'base-acl/table’

Key: 1.25.1638504.1638499.

base-acl/table/npu-id-list = 0 base-acl/table/stage = 1
base-acl/table/priority = 99
base-acl/table/allowed-match-fields = 3,6,9,21
base-acl/table/id = 2

DUALLEMC

Create ACL entry using Python

An ACL entry is a rule that consists of a set of filters that define packets to be matched, and a set of actions to be performed on the
matched packets.

1

Import the CPS utility Python library.

import cps utils

import nas_os utils

Define the enum map.

NOTE: A CPS Python application does not automatically map the YANG model enum name to a number.

e stg = {'INGRESS': 1, 'EGRESS': 2}

e ftype = {'SRC_MAC': 3, 'DST MAC': 4, 'SRC IP': 5, 'DST IP': 6, 'IN PORT': 9, 'DSCP': 21}
e atype {'"PACKET ACTION': 3, 'SET TC': 10}

e ptype = {'DROP': 1}

Register the attribute type with the CPS utility for attributes with non-integer values.

type map = {
'base-acl/entry/SRC_MAC VALUE/addr': 'mac',
'base-acl/entry/SRC_MAC VALUE/mask': 'mac',
}

for key,val in type map.items() :
cps_utils.cps_attr types map.add type (key, val)

Create the CPS object based on the dell-base-acl.yang model, then define the leaf attributes.
cps_obj = cps_utils.CPSObject (module='base-acl/table)

Define the ACL table ID to indicate the group to which this ACL entry belongs to. The priority value determines the sequence of the
ACL rule lookup in the ACL table group.

cps_obj.add attr ('table-id', tbl id) cps_obj.add attr ('priority', 512)
Define the filters that the packets are matched to — filter attribute is a YANG nested list. The add_embed attr () function is used
to create multiple instances for nested lists. Each filter instance is made up of two attributes — match-type and match-value.

NOTE: Use the correct match-value attribute name depending on the value assigned to the match-type. Use the attribute name
src_mac_value when match-type is src_mac.

Filter 1 — match packets with a specific source MAC address

cps_obj.add embed attr (['match','0',6 'type'], e ftype['SRC MAC'])
cps_obj.add embed attr (['match','0','SRC MAC VALUE',6 'addr'], '50:10:6e:00:00:00"', 2)

Filter 2 — match packets received on a specific port

cps_obj.add embed attr (['match','l',6 'type'], e ftype['IN PORT'])
cps_obj.add embed attr (['match','l',6 "IN PORT VALUE'],

nas_os utils.if nametoindex('el01-001-0"))

Define actions to apply on matched packets — action attribute is a YANG nested list. The add_embed_attr () function is used to
create multiple instances for nested lists. Each action instance is made up of two attributes — action-type and action-value.

NOTE: Use the correct action-value attribute name depending on the value assigned to the action-type. Use attribute name
packet action value when action-type is packet action

Action — drop

cps_obj.add embed attr (['action','QO',6 'type'l, e atype['PACKET ACTION'])
cps_obj.add embed attr (['action','0', 'PACKET ACTION VALUE'], e ptype['DROP'])

Associate the CPS object an operation.
cps_update = ('create', cps obj.get())

Add the CPS operation and object pair to a new transaction. Each CPS transaction holds multiple pairs of CPS operation and object
updates.

cps_trans = cps_utils.CPSTransaction([cps_update])

DELLEMC

10 Verify the return value.

ret = cps trans.commit ()
if not ret:
raise RuntimeError ("Error creating MAC ACL Entry")

1 Retrieve the CPS object ID from the ACL table. This ID is used for all operations on the ACL table.

cps _get val = cps utils.CPSObject (module='base-acl/entry', obj=r[0]['change'])
mac_eid = cps_get val.get attr data ('id'")
print "Successfully created MAC ACL Entry " + str(mac eid)

create-acl-table.py
#Python code block to create ACL table entry /usr/bin/python

Simple Base ACL CPS config using the generic CPS Python module and utilities

Create ACL Table

Create ACL Entry to Drop all packets received on specific port from specific Src MAC
import cps utils

import nas_os utils

#Yang enum name to number map

e stg = {'INGRESS': 1, 'EGRESS': 2}

e ftype = {'SRC MAC': 3, 'DST MAC': 4, 'SRC IP': 5, 'DST IP': 6, 'IN PORT': 9, 'DSCP': 21}
e atype = {'PACKET ACTION': 3, 'SET TC': 10}

e ptype = {'DROP': 1}

#Inform CPS utility about the type of each attribute

type map = {
'base-acl/entry/SRC_MAC VALUE/addr': 'mac’,
'base-acl/entry/SRC_MAC VALUE/mask': 'mac',

}

for key,val in type map.items() :
cps_utils.cps attr types map.add type (key, val)

#Create ACL Table

#Create CPS object and fill leaf attributes

cps_obj = cps_utils.CPSObject (module='base-acl/table')
cps_obj.add attr ('stage', e stg['INGRESS'])
cps_obj.add attr ('priority', 99)

#Populate the leaf-list attribute
cps_obj.add list ('allowed-match-fields', [e ftype['SRC MAC'], e ftype['DST IP'],
e ftype['DSCP'], e ftype['IN PORT']])

#Associate the CPS Object with a CPS operation
cps_update = ('create', cps obj.get())

#Add the CPS object to a new CPS Transaction
cps_trans = cps_utils.CPSTransaction([cps update])

#Verify return value
ret = cps_trans.commit ()
if not ret:
raise RuntimeError ("Error creating ACL Table")

#Retrieve CPS Object ID

ret = cps _utils.CPSObject (module="'base-acl/table', obj=r[0]['change'])
tbl id = ret.get attr data ('id')

print "Successfully created ACL Table" + str(tbl id)

#Create ACL table entry

#Drop all packets received on specific port from specific range of MACs
#Create CPS Object and fill leaf attributes

cps_obj = cps_utils.CPSObject (module='base-acl/entry")

cps_obj.add attr ('table-id', tbl id)

cps_obj.add attr ('priority', 512)

DUALLEMC

#Filters
#Match Filter 1 - Src MAC
cps_obj.add embed attr (['match','Q','type'], e ftype['SRC MAC'])

#The 2 at the end indicates that the type should be deducted from the last 2 attrs
(SRC_MAC_VALUE, addr)
cps_obj.add embed attr (['match','0','SRC MAC VALUE',6 'addr'], '50:10:6e:00:00:00"', 2)

#Match Filter 2 - Rx Port
cps_obj.add embed attr (['match','l',6K 'type'], e ftype['IN PORT'])
cps_obj.add embed attr (['match','l', "IN PORT VALUE'],

nas_os utils.if nametoindex('el01-001-0"))

#Action - Drop
cps_obj.add embed attr (
cps_obj.add embed attr (

['action','0','type'], e atype['PACKET ACTION'])
['action','0', 'PACKET ACTION VALUE'], e ptype['DROP'])
#Associate the CPS Object with a CPS operation cps update = ('create', cps obj.get())
#Add the CPS object to a new CPS Transaction cps_trans = cps utils.CPSTransaction([cps update])
#Commit the CPS transaction and verify return
ret = cps_trans.commit ()
if not ret:
raise RuntimeError ("Error creating MAC ACL Entry")

#Return CPS Object ID

ret = cps utils.CPSObject (module='base-acl/entry', obj=r[0]['change'])
mac_eid = ret.get attr data ('id')

print "Successfully created MAC ACL Entry" + str(mac_eid)

Verify ACL entry creation using CPS get
cps_get oid.py 'base-acl/entry'

Key: 1.25.1638505.1638428.1638429. base-acl/entry/table-id = 2
base-acl/entry/id = 1
base-acl/entry/match/IN_PORT VALUE = 23
base-acl/entry/match/type = 9
base-acl/entry/match/SRC MAC VALUE/mask
base-acl/entry/match/SRC_MAC VALUE/addr
base-acl/entry/match/type = 3
base-acl/entry/action/PACKET ACTION VALUE = 1
base-acl/entry/action/type = 3
base-acl/entry/npu-id-1list = 0
base-acl/entry/priority = 512

fE££££000000
50106e000000

Verify NPU ACL entry creation

EID 0x00000018: gid=0x2,
slice=1, slice idx=0, part =0 prio=0x200, flags=0x10202, Installed, Enabled
tcam: color indep=0,
Stage
StageIngress
InPort
DATA=0x0002000000000000
MASK=0x0000000000000000000000000000000000000 1L ffffffffffffffffffffffffff
SrcMac
Offset0: 241 WidthO: 48
DATA=0x00005010 6e000000
MASK=0x0000ffff ££000000
action={act=Drop, param0=0(0), paraml=0(0), param2=0(0), param3=0(0) }
policer=
statistics=NULL

Delete ACL entry using Python

1 Import the CPS utility Python library.
import cps utils

2 Define the enum map.

DELLEMC

NOTE: A CPS Python application does not automatically map the YANG model enum name to a number.

e stg = {'INGRESS': 1, 'EGRESS': 2}
e ftype = {'SRC MAC': 3, 'DST MAC': 4, 'SRC IP': 5, 'DST IP': 6, 'IN PORT': 9, 'DSCP': 21}
e atype = {'PACKET ACTION': 3, 'SET TC': 10}
e ptype = {'DROP': 1}
3 Register the attribute type with the CPS utility for attributes with non-integer values.

type map = {
'base-acl/entry/SRC_MAC VALUE/addr': 'mac',
'base-acl/entry/SRC_MAC VALUE/mask': 'mac',

%or key,val in type map.items () :
cps_utils.cps attr types map.add type (key, val)

4 Define the table and entry ID key values and create the CPS object.

cps_obj = cps_utils.CPSObject (module='base-acl/entry', data={'table-id': 'id': mac_eid})
5 Associate the object with a CPS operation.

cps_update = ('delete', cps obj.get())
6 Add the operation and object pair to a new CPS transaction.

cps_trans = cps_utils.CPSTransaction([cps_update])
7 Verify the return value.

ret = cps_trans.commit ()
if not ret:
raise RuntimeError ("Error deleting ACL Entry")

delete-acl.py
#Python code block to delete ACL entry
import cps utils

#Create the CPS Object and fill the table-id and entry-id key values
cps_obj = cps_utils.CPSObject (module='base-acl/entry', data={'table-id': 2, 'id': 1})

#Associate the CPS Object with a CPS operation
cps_update = ('delete', cps obj.get())

#Add the CPS object to a new CPS Transaction
cps_trans = cps_utils.CPSTransaction([cps update])

#Verify return value
ret = cps trans.commit ()
if not ret:
raise RuntimeError ("Error deleting ACL Entry")

MAC address table application examples

This information includes both Python and C/C++ application examples.

0]

NOTE: See the dell-base-12-mac.yang model that defines the MAC object and attributes before creating a MAC address
table entry.

Create MAC address table entry

1 Import the CPS utility Python library.
import cps utils
2 Register the mac-address attribute type as mac-address to convert between the string and byte-array formats.
cps_utils.add attr type("base-mac/table/mac-address", "mac")
3 Create a new MAC entry by entering the MAC address, interface index, and VLAN attributes.
d = {"mac-address": "00:0a:0b:cc:0d:0e","ifindex": 18,"vlan": "100"}
4 Create a CPS object.
obj = cps_utils.CPSObject ('base-mac/table',data= d)

DUALLEMC

5 Add the operation to the object.

tr obj = ('create', obj.get())
6 Create a transaction object.

transaction = cps utils.CPSTransaction([tr obj])
7 Verify the return value.

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error creating MAC Table Entry")

create-mac-table-entry.py

#Python block code to create MAC Table entry
import cps utils

#Register attribute type
cps_utils.add attr type ("base-mac/table/mac-address", "mac")

#Define VLAN attributes

d = {"mac-address": "00:0a:0b:cc:0d:0e","ifindex": 18,"vlan":

#Create CPS object
obj = cps_utils.CPSObject ('base-mac/table',data= d)

#Associate operation to CPS object
tr obj = ('create', obj.get())

#Create transaction object
transaction = cps utils.CPSTransaction([tr obj])

#Verify return value
ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error creating MAC Table Entry")

lllOOll}

If you do not specify a qualifier value for a key, target is used by default to create the object. To use a non-default qualifier, enter obj =

cps_utils.CPSObject ('base-mac/table', qual='observed',data= d).

create-mac-table-entry.c

// C application example to create a MAC address table entry

#include "cps_api object.h"
#include "dell-base-12-mac.h"
#include "cps class map.h"
#include "cps_api object key.h"
#include <stdint.h>

#include <net/if.h>

bool cps_create mac () {

// Create and initialize the transaction object
cps_api transaction params t tran;

if (cps_api transaction init(&tran) != cps api ret code OK) {

return false;

}

// Create and initialize the key cps_api key t key;

cps_api key from attr with qual (skey, BASE MAC TABLE OBJ, cps api qualifier TARGET) ;

// Create the object
cps_api object t obj = cps api object create();

if (obj == NULL) {

DELLEMC

cps_api transaction close(&tran);
return false;

}

// Set the key for the object
cps_api object set key(obj, &key);

// Add attributes mandatory to create MAC address entry
uint8 t mac_addr[6] = {0x0,0xa,Oxb,0xc,0xd,0xe}; uintl6 t vlan id = 100;

cps_api object attr add(obj,BASE MAC TABLE MAC ADDRESS, mac addr, sizeof (hal mac addr t));
cps_api object attr add u32(obj,BASE MAC TABLE IFINDEX,if nametoindex("el01-001-0"));

// Add MAC table VLAN ID
cps_api object attr add ul6(obj,BASE MAC TABLE VLAN,vlan id);

// Add the object along with the operation to transaction

if (cps_api create(&tran,obj) != cps api ret code OK) {
cps_api object delete (obj) ;
return false;

}

// Commit the transaction

if (cps_api commit (&tran) (= cps_api ret code OK)
cps_api transaction close(&tran);
return false;

}

// Cleanup the Transaction
cps_api transaction close(&tran);

return true;

}
Delete MAC address table entry

1 Import the CPS utility Python library.
import cps utils
2 Register the attribute type to convert between string and byte-array format.
cps_utils.add attr type ("base-mac/table/mac-address", "mac")
3 Define the MAC address, interface index, and VLAN to delete the static address entry.
d = {"mac-address": "00:0a:0b:cc:0d:0e", "ifindex": 18, "vlan": "100"}
4 Create a CPS object.
obj = cps_utils.CPSObject ('base-mac/table',data= d)
5 Add the operation to the object.
tr obj = ('delete', obj.get())
6 Create a transaction object.
transaction = cps_utils.CPSTransaction([tr obj])
7 Verify the return value.

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error deleting entry from MAC Table")

delete-mac-table-entry.py

#Python block code to delete MAC address table entry
import cps utils

#Register attribute type
cps_utils.add attr type ("base-mac/table/mac-address", "mac")

#Define MAC address
d = {"mac-address": "00:0a:0b:cc:0d:0e", "ifindex": 18, "vlan": "100"}

DUALLEMC

#Create CPS object
obj = cps_utils.CPSObject ('base-mac/table',data=d)

#Add operation to object
tr obj = ('delete', obj.get())

#Create transaction object
transaction = cps_utils.CPSTransaction([tr obj])

#Verify return value
ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error deleting entry from MAC Table")

delete-mac-table-entry.c
// C application example to delete a MAC address table entry

#include "cps_api object.h"
#include "dell-base-12-mac.h"
#include "cps class map.h"
#include "cps_api object key.h"

#include <stdint.h>
#include <net/if.h>

bool cps _delete mac () {

// Create and initialize the transaction object cps_api transaction params_t tran;
if (cps_api transaction init (&tran) = cps_api ret code OK) {
return false;

}

// Create and initialize the key cps_api key t key;
cps _api key from attr with qual (&key, BASE MAC TABLE OBJ, cps api qualifier TARGET) ;

// Create the object
cps_api object t obj = cps _api object create();

if(obj == NULL){ cps_api transaction close(&tran); return false;

}

// Set the key for the object
cps_api object set key(obj, &key);

// Add attributes mandatory to create MAC address entry
uint8 t mac_addr [6] = {0x0,0xa,0xb,0xc,0xd,Oxe};

uintlé t vlan id = 13ig

cps_api object attr add(obj,BASE MAC TABLE MAC ADDRESS, mac_addr, sizeof (hal mac addr t));
cps_api object attr add u32(obj,BASE MAC TABLE IFINDEX,if nametoindex("el01-001-0"))8
cps_api object attr add ul6(obj,BASE MAC TABLE VLAN,vlan id);

// Add the object along with the operation to transaction if(cps_api delete(&tran,obj) !=

cps_api ret code OK) {
cps_api delete object (obj) ;
return false;

}

// Commit the transaction

if (cps_api commit (&tran) = cps_api ret code OK) |
cps_api transaction close (&tran);
return false;

}

DELLEMC

// Cleanup the Transaction
cps_api transaction close(&tran);

return true;

}

To delete the MAC address from all VLANS, specify the v1an attribute and its value in the object. To delete all MAC entries from an
interface, specify the 1 findex attribute and its value in the object. To delete MAC entries from both a VLAN and member interface,
specify the vlan and ifindex attributes and their values in the object.

(O | NOTE: Deletion of static entries based only on VLAN, interface or a VLAN/interface combination is not supported. To delete a
static entry, you must add the mac-address, vlan, and ifindex attributes and their values to the object.

Delete MAC address table entries from mulitple VLANs

1 Import the CPS utility Python library.
import cps utils
2 Define the VLANSs to remove MAC address entries from.
vlan list=[1,2,3,4,5]
3 Create the CPS object.
obj = cps_utils.CPSObject ('base-mac/flush')
4 Add the VLAN list to the CPS object.

count = 0
el = ["input/filter™,"O0","vlan"]
for vlan in vlan list:
obj.add embed attr (el, vlan)
count = count + 1
el[l] = str(count)

5 Associate the operation to the object.

tr obj = ('rpc', obj.get())
6 Create a transaction object.

transaction = cps_utils.CPSTransaction([tr obj])
7 Verify the return value.

ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error Flushing entries from MAC Table")

remove-mac-table-entries-from-multiple-vians.py

#Python block code to remove MAC table entries from multiple VLANS
import cps utils

#Define VLANS
vlan list =[1,2,3,4,5]

#Create CPS object
obj = cps_utils.CPSObject ('base-mac/flush')

#Add VLAN list to CPS object

count = 0

el = ["input/filter","0","vlan"]

for vlan in vlan list:
obj.add embed attr(el, vlan)
count = count + 1

el[l] = str (count)

#Associate operation to object
tr obj = ('rpc', obj.get())

#Create transaction object
transaction = cps_utils.CPSTransaction([tr obj])

DUALLEMC

#Verify return value
ret = transaction.commit ()
if not ret:
raise RuntimeError ("Error Flushing entries from MAC Table")

remove-mac-table-entries-from-multiple-vlans.c
// C application example to remove MAC address table entries from multiple VLANS

#include "cps_api object.h"
#include "dell-base-12-mac.h"
#include "cps_class map.h"
#include "cps api object key.h"

#include <stdint.h>
#include <net/if.h>

bool cps_flush mac() {

// Create and initialize the transaction object

cps_api transaction params t tran;
if (cps_api transaction init (&tran) != cps api ret code OK) {
return false;

}

// Create and initialize the key

cps_api key t key;

cps _api key from attr with qual (&key, BASE MAC FLUSH OBJ, cps api qualifier TARGET) ;

// Create the object

cps_api object t obj = cps _api object create();
if (obj == NULL) {

cps_api transaction close(&tran);

return false;

}

// Set the key for the object
cps_api object set key(obj, &key);

// Add attributes to flush MAC entries

cps_api_attr id t ids[3] = {BASE MAC FLUSH INPUT FILTER,O,
BASE_MAC_FLUSH INPUT FILTER VLAN };

const int ids_len = sizeof (ids)/sizeof (ids[0]);

uintlé6 t vlan list[3]={1,2,3};
for (unsigned int ix=0; ix<sizeof (vlan list)/sizeof(vlan 1ist[0]); ++ix) {
ids[1]1=1ix;

cps_api object e add(obj,ids,ids len,cps api object ATTR T Ul6,&(vlan list[ix]),sizeof(vlan lis
tlix]))
}

unsigned int ifindex list[] =

{ 1f nametoindex("el01-001-0"),if nametoindex("el01-002-0"), if nametoindex ("el101-003-0")};
ids[2] :BASEiMAciFLUSHilNPUTiFILTERﬁI FINDEX;
for (unsigned int ix=0; ix<sizeof(ifindex_list)/sizeof(ifindex_list[O]); ++ix) {

ids[1l]=ix;

cps_api object e add(obj,ids,ids len,cps api object ATTR T Ul6, &ifindex list[ix],sizeof (ifindex
list[ix])):
1

// Add the object along with the operation to transaction

DELLEMC

if (cps_api action(&tran,obj) != cps api ret code OK) {
cps_api object delete (obj) ;
return false;

}

// Commit the transaction

if (cps_api commit (&tran) = cps_api ret code OK) A
cps_api transaction close (&tran);
return false;

}

// Cleanup the Transaction
cps_api transaction close(&tran);

return true;

}

Event application examples

Register events

1 Import the CPS object Python library.
import cps
2 Create a handle to connect to event service.
handle = cps.event connect ()
3 Register a key with the event service to receive notification when an event for the key is published.

cps.event register (handle, cps.key from name ('observed', 'base-port/interface'))
while True:

wait for the event

o = cps.event wait (handle)

print o

register-for-events.py
#Python block code to register for events

import cps

#Create handle to connect to event service
handle = cps.event connect ()

#Register key with event service
cps.event register (handle, cps.key from name ('observed', 'base-port/interface'))
while True:

o = cps.event wait (handle)

print o

register-for-events.c

// C application example to register for events

#include "cps api events.h"

#include "cps_api object.h"

#include "dell-base-phy-interface.h"
#include "cps class map.h"

#include "cps api object key.h"

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

// Callback for the interface event handling
static bool cps_if event cb(cps_api object t obj, void *param) {

DUALLEMC

char buf[1024];

cps_api object to string(obj,buf,sizeof (buf));
printf ("Object Received %s \n",buf) ;
return true;

}

bool cps_reg intf events() {

// Initialize the event service

if (cps_api event service init() = cps_api ret code OK)

return false;

}

// Initialize the event handling thread

if (cps api event thread init() l= cps_api ret code OK)
return false;

}

// Create and initialize the key
cps_api key t key;

{

{

cps_api key from attr with qual (&key, BASE PORT INTERFACE OBJ,

// Create the registration object
cps_api event reg t reg;
memset (®, 0, sizeof (reqg)) ;

cps_api qualifier OBSERVED) ;

reg.number of objects = 1;

reg.objects = &key;

// Register to receive events for key created above

if (cps api event thread reg(®, cps_if event cb,NULL) !=cps api ret code OK) {
return false;

}

// Wait for the events
while (1) {

sleep (1) ;
}

return true;
}
Publish events

1 Import the CPS and CPS utlity Python library.

import cps
import cps utils

2 Create a handle to connect to the event service.
handle = cps.event connect ()
3 Create a CPS object.

obj = cps_utils.CPSObject ('dell-base-if-cmn/if/interfaces/interface’',qual='observed', data=

{"ifindex":23})
4 Publish the object.
cps.event send(handle, obj.get())

publish-events.py

#Python block code to publish events
import cps

import cps_utils

#Create handle to connect to event service
handle = cps.event connect ()

DELLEMC

#Create CPS object
obj = cps_utils.CPSObject ('base-port/interface',qual="'observed', data= {"ifindex":23})

#Publish the object
cps.event send(handle, obj.get ())

publish-events.c

// C application example to publish events

#include "cps_api_events.h"

#include "cps_api object.h"

#include "dell-base-phy-interface.h"
#include "cps class map.h"

#include "cps_api object key.h"

#include <stdio.h>
#include <net/if.h>

bool cps_pub intf event () {

static cps_apl event service handle t handle;

if (cps_api event service init () = cps_api ret code OK) {
return false;

}

if (cps_api event client connect (&¢handle) = cps_api ret code OK) {
return false;

}

// Create and intialize the key
cps_api key t key;
cps_api key from attr with qual (&key, BASE PORT INTERFACE OBJ, cps api qualifier OBSERVED) ;

// Create the object

cps_api object t obj = cps api object create();
if (obj == NULL) {
return false;

}

// Add attributes to the object
cps_api object attr add u32(obj,BASE PORT INTERFACE IFINDEX, if nametoindex ("el01-001-0"));

// Set the key to the object
cps_api object set key(obj, &key);

/ /Publish the object

if (cps_api event publish (handle,obj) != cps_api ret code OK) {
cps_api object delete (obj) ;
return false;

}

// Delete the object
cps_api object delete (obj) ;
return true;

DUALLEMC

Application templates

Provided are templates to develop applications in Python and C/C++ for server and client applications, and event publishers and event
subscribers. Client applications subscribe to events—server applications publish events, and applications can act as both clients and

servers.

Event flow between CPS client and server applications

CPS

Client Application

CPS
Server Application

x 2. Set Fan Speed Request I 5. Response
6. Response l 1. Registration 3. Set Message 4. Set Fan Speed
CPS
Framework Hardware

Event flow between a CPS event subscriber and publisher

Event Subscriber

Event Publisher
1 Subscnbe

I

3. Receive Notification

Python templates

Server application

Client application

Event publisher
application

Event subscriber
application

C/C++ templates

Server application

Client application

2. Publiih

CPS
Framework

Template for the structure of a server (object owner), including the transaction callback handler for set, create,
delete, action operations and a separate handler for get operations.

Template for the structure of a client application including the execution of a get request.
Template for the structure of an event publisher.

Template for the structure of an event subscriber. The application registers for events, and waits for events in a
loop.

Template for the structure of a CPS server (object owner) including read and write functions for get operations
(xyz_read)—set, create, delete, action operations (xyz_write), and rollback of failed transactions
(xyz_rollback).

Template for the structure of a CPS client including read and write functions for get requests (building keys and
object lists), and set requests (using a transaction).

DALEMC

Event publisher Template for the structure of a CPS event publisher including initialization of the event service, connection to the

application object library, and the event publish operation.
Event subscriber Template for the structure of a CPS event subscriber including initialization of the event service and event
application processing thread, and registration of the event handler function, and event processing callback. The key list
specified in the registration is used to determine the events delivered to the application—Ilist contains a single
element.
Topics:

CPS server application templates

CPS client application templates

CPS event publisher application templates
CPS event subscriber application templates

CPS server application templates

This information includes templates for the structure of a CPS server (object owner), including the transaction callback handler for set,
create, and delete action operations, and a separate handler for get operations.

python-server-template.py

#Python code block for CPS server application
import time import cps

import cps_utils

#Define the get callback handler function
def get callback (methods, params) :

#Append object to the response, echoing back the key from the request, and supplying some
attributes

params[list].append({ key : params[filter][key 1,
data : { attr 1 : value 1 ,
attr n : value n

}

return True

#Define the transaction callback handler function
def transaction callback (methods, params) :
if params|[operation] == set :
#Set operation requested
#Extract attributes from request object attr 1 = params[change][data][attr 1]
attr n = params[change]
[data][attr n]

#Do something with them -- program hardware, update the configuration, etc.
return True
if params|[operation] == create

return True

if params|[operation] == delete
return True
if params|[operation] == action

return True

return False

DUALLEMC

#Obtain handle to CPS API service
handle = cps.obj init()

#Register above handlers to be run when a request is received for given key

cps.obj register (handle, key,
{ get : get callback,
transaction : transaction callback
}
)

#Let the handlers run
while True:
time.sleep(1000)

c-template-server-application.c
/**
Template CPS API object server read handler function

This function is invoked by the CPS API service when a GET request
is placed for a registered CPS API object. The binding of CPS

API object key to the read handler function is done below.
***/

cps_api return code t xyz read(

void *context,
cps_apl get params_t *param,
size t key idx

)

/* Allocate a response object, and add to response */

cps_api object t response obj;

response obj = cps api object list create obj and append (
param->list

)i

if (response obj == CPS API OBJECT NULL) ({
/* Failed to allocate response object
=> Indicate an error
=/
return (cps_api ret code ERR);

}

/* Fill in response object */
cps_api key from attr with qual (cps api object key(response obj),

)i

cps_api set key data(response obj, ...);
cps_api set key data(response obj, ...);
cps_api object attr add ... (response obj, ...);
cps _api object attr add ... (response obj, ...);

/* Indicate GET response successful */
return (cps _api ret code OK);}

/**
Template CPS API object server write handler function

This function is invoked by the CPS API service when a SET request
is placed for a registered CPS API object. The binding of CPS

API object key to the write handler function is done below.
***/

cps_api return code t xyz write(

void *context,
cps_api transaction params_ t *param,
size t index of element being updated

DELLEMC

/* Extract the object given in the request */
cps_api object t request obj;
request obj = cps api object list get(
param->change list,
index of element being updated

)

if (request obj == CPS API OBJECT NULL) ({
/* Failed to extract request object
=> Indicate error
*/
return (cps api ret code ERR);

}

/* Assume error response */
cps_api return code t result = cps api ret code ERR;

/* Determine the type of write operation */
switch (cps api object type operation (
cps _api object key(request obj)
)
) A

case cps_api_ oper SET:

/* SET operation requested */

/* Create the rollback object, i.e. an object to return

containing the old values for any attributes set,
add to transaction

*/

cps_api object t rollback obj;

rollback obj = cps api object list create obj and append/(

param->prev
)7

if (rollback obj == CPS API OBJECT NULL) {
/* Failed to create rollback object */
break;

}

/* Assume SET successful */
result = cps api ret code OK;

/* For each attribute given in the request, W/
cps_api object it t attr iter;

cps_apil object it begin(request obj, &attr iter);
while (cps _api object it valid(&attr iter)) {

/* Get the attribute id from the attribute iterator */

cps_api attr id t attr id;

attr id = cps _api object attr id(attr iter.attr);

/* Update the rollback object with the old value
of the attribute

*/

cps_api object attr add ... (rollback obj,
attr id,

)i

DUALLEMC

/* Extract the attribute from the request object */
cps _api object attr t attr;

attr = cps_api object attr get(request obj, attr id);

if (attr == CPS_API ATTR NULL)) {
/* Failed to extract attribute
=> Indicate error
=/
result = cps api ret code ERR;
continue;

}

/* Extract the value of the attribute in the request
object
=/

value = cps_api object attr data(attr);

/* Validate the requested attribute value, its
consistency with other attributes and/or existing
configuration, etc.

*/
}

/* If the whole request has been validated, do something with
the extracted values program hardware,
take some action, etc.

=/

break;

case cps_api oper CREATE:
/* CREATE operation requested */
break;

case cps_api oper DELETE:
/* DELETE operation requested */
break;

case cps_api oper ACTION:
/* ACTION operation requested */
break;

default:
/* Invalid SET request type */
break;

}

return (result);

}

/**

Template CPS API object server rollback handler function
***/

cps_api return code t xyz rollback(

void *context,
cps_api transaction params t *param,
size t index of element being updated

)

/* Extract object to be rolled back */

cps_api object t rollback obj;

rollback obj = cps _api object list get(
param->prev,
index of element being updated

DELLEMC

)

if (rollback obj == CPS API OBJECT NULL) ({
/* Failed to extract rollback object

=> Indicate failure

*/

return (cps_api ret code ERR);

}

/* For each attribute to be rolled back, w/
cps_api object it t attr iter;

cps_api object it begin(rollback obj, &attr iter);
while (cps _api object it valid(&attr iter)) {

}

/* Get the attribute id from the attribute iterator */
cps_api attr id t attr id;

attr id = cps_api object attr id(attr iter.attr);
/* Extract the attribute from the rollback object */

cps_api object attr t attr;
attr = cps_api object attr get(rollback obj, attr id);
if (attr == CPS API ATTR NULL)) {

/* Failed to extract attribute
=> Indicate error

*/

result = cps api ret code ERR;
continue;

}

/* Extract the value of the attribute in the rollback

object
=/

value = cps_api object attr data(attr);

/* Rpply attribute value */

return (result);

}

/**
Template mainline function for a CPS API object server

This function registers with the CPS API service, and registers handler
functions to be invoked by the CPS API service when CPS API requests

are made for certain CPS API objects.
***/

cps_api return code t init (void)

{

/* Obtain a handle for the CPS API service */

cps_api operation handle t cps_ hdl;

if

DUALLEMC

(cps_api operation subsystem init (&cps hdl, 1) !=
cps_api ret code OK

) A

/* Failed to obtain handle for CPS API service

=> Indicate an error
*/
return (cps api ret code ERR);

}

/* Allocate a CPS API object registration structure */
cps_api registration functions t reg;

/* Assign the key of the CPS API object to be registered */
cps_api key init (®.key,);

/* Assign the handler functions to be invoked for this object */
reg. read function = xyz read;

reg. write function = xXyz write;

reg. rollback function = xyz rollback;

/* Use obtained handle for CPS API service */
reg.handle = cps_ hdl;

/* Perform the object registration */
if (cps_api register(&reqg) != cps api ret code OK) {

/* Failed to register handler function with CPS API service
=> Indicate an error

*/

return (cps_api ret code ERR);

}

/* All done */
return (cps_api ret code OK);

}

CPS client application templates

This information includes templates for the structure of a CPS client application, including the execution of a get request.

python-client-application-template.py

#Python code block for CPS client application
import cps

import cps _utils

#Example GET request cps_get response =]
cps.get ([cps.key from name ('observed', 'base-pas/chassis')], cps_get response)

chassis vendor name = cps_attr get(cps get response[0]['data'], 'base-pas/chassis/vendor-
name')

c-client.template.c
/**

Template to perform a CPS API GET request
***/

cps_api return code t do get request ()
{
s Allocate and initialize the get request structure =/
cps_api get params_ t get req;
if (cps api get request init (&get req) = cps_api ret code OK) {
Vs Failed to initialize get request
=> Indicate error

*/

return (cps_api ret code ERR);

DELLEMC

/= Assume failure response W/

cps_api return code t result = cps_api ret code ERR;
do {
s Allocate the request object and add it to the get request
*/
cps_api object t request obj;
request obj = cps_api object list create obj and append(

get req.filters
)i
if (request obj == CPS API OBJECT NULL) {
s Failed to allocate response object and add it to get request w/
break;

}

A Set the key and key attributes for the request object.
The actual object key and key attribute ids, types and values
will depend on which object is being requested;
such dependent values are indicated by ellipses ... below.
Consult the data model for the desired object.
%/
cps_api key from attr with qual (cps api object key(
request obj
),
)
cps_api set key data(request obj, coo) 8
... cps_api set key data(request obj, coc) g

cps_api object attr add ... (request obj, coo)g
.. cps_api object attr _add ... (request obj, coo) g

/* Do the GET request &Y

if (cps_api get (&get req) = cps_api ret code OK) {
/% GET request failed w/
break;
}
/% Extract the response object =y
cps_api object t response obj;
response_ obj = cpsiapiiobjectilistiget(getireq.list, 0);
if (response obj == CPS API OBJECT NULL) {
/= Failed to extract the response object ¥/
break;
}
/= Extract the desired object attributes from the response object.

(The actual object attributes will depend on the nature of the response object;
such dependent values are indicated by ellipses below.
Consult the appropriate data model for details.)

*/
cps_api object attr t attr;
attr = cps_api_ object attr get (response obj,) 8
if (attr = CPS_API ATTR NULL) {
s Failed to extract expected attribute %)
break;

}

A Get the value for the attribute Y/
= cps_api object attr data ... (attr);

DUALLEMC

/= Do something with the extracted value W/

7% Indicate success */
result = cps_api ret code OK;
} while (0);

cps_api get request close(&get req);
return (result) ;

/**

Template to perform CPS API SET
***/

cps_api return code t do_set request ()

{

cps_api transaction params t xact ;
if (cps_api transaction init (&xact) = cps_api ret code OK) {
return (cps_api ret code ERR);
}
cps_api return code t result = cps_api ret code ERR;
do {
cps_api object t request obj;
request obj = cps_api object create() g
if (request obj == CPS API OBJECT NULL) {
break;

}

A Set key and attributes in request object =)
cps_api key from attr with qual (cps api object key(
request obj
)

)

cps_api set key data(request obj, coo) 8

cps_apil set key data(request obj, coo)g
cps_api object attr add ... (request obj, coo)f
cps_api object attr add ... (request obj, coo) 8
if (cps_api set (&xact, request obj) l= cps_api ret code OK)

cps_api object delete(request obj);

break;

}

result = cCcps_api commit (&xact);
} while (0);

cps_api transaction close (&xact);

return (result) ;

DELLEMC

CPS event publisher application templates

This information includes templates for the structure of a CPS event publisher.

python-event-publisher-application.py

#Python code block for CPS event publisher application
import cps
import cps_utils

handle = cps.event connect ()

obj = cps_utils.CPSObject ('base-port/interface',qual='observed', data=

cps.event send(handle, obj.get())

c-template-event-publisher-application.c

/**

Template for event publish function

***/

cps_api return code t event publish(cps api object t event obj)
{

static bool init flag = false;

static cps_api event service handle t handle;

if (!init flag) {
A Not initialized
=> Connect to CPS event subsystem
*/
if (cps_api event service init() (= cps_api ret code OK)
return (cps_api ret code ERR);

}

if (cps_api event client connect (&¢handle) =
cps_api_ret code OK

) A

return (cps_api ret code ERR);
1
/* Mark as initialized */
init flag = true;
}
cps_api return code t result;

/* Publish the given object %)
result = cps_api_event publish (handle, event obj);

/% Consume the given object =
cps_api object delete(event obj);

return (result) ;

}

{"ifindex":23})

CPS event subscriber application templates

This information includes templates for the structure of a CPS event subscriber. It illustrates the initialization of the event service and event
processing thread, registration of the event handler function and event processing callback. The key list specified in the registration is used
to determine the events that are delivered to this application (in this case, the list contains a single element).

DUALLEMC

python-event-subscriber-application.py

#Python block code for CPS event subscriber application
import cps
import cps utils

handle = cps.event connect ()
cps.event register (handle, cps api object key)

while True:
ev = cps.event wait (handle)

if ev[‘key’] == ...:
... elif ev['key'] ==

c-template-event-subscriber-application.c
/**

Template for event subscriber application
***/

bool event handler (cps_api object t object, void *context)

/* Extract key and attributes of received object */
/* Do something with that information */

}

cps_api return code t event subscribe ()

{

/* Connect to CPS API event service */

if (cps_api event service init () = cps_api ret code OK) {
return (cps_api ret code ERR);

}

if (cps_api event thread init() = cps_api ret code OK) {
return (cps_api ret code ERR);

}

/* Register the event handler function */

cps_api key t key; cps_api key init (&key,); cps_api event reg t reg; reg.objects
= key;

reg.number of objects = 1;

if (cps api event thread reg(®, event handler, 0)

= cps_api_ret code OK
) |
/* Failed to register handler */

return (cps_api ret code ERR);

}

/* Indicate success */
return (cps_api reg code OK);

DELLEMC

	OpenSwitch OPX Developers Guide Release 2.2.1
	Getting started
	Architecture
	Run-time components
	Boot sequence

	Programmability
	Client and server applications
	CPS keys
	Objects and attributes
	CPS qualifiers
	Publish/subscribe
	API operations
	YANG modeling objects
	CPS API objects
	Object dictionary support
	YANG model C header
	sFlow using YANG and Python
	YANG model reference
	CPS API reference

	Application examples
	VLAN application examples
	IP address application examples
	Route application examples
	ACL application examples
	MAC address table application examples
	Event application examples

	Application templates
	CPS server application templates
	CPS client application templates
	CPS event publisher application templates
	CPS event subscriber application templates

